

Practical

Electronics

and Arduino

in 8 Hours
2020 edition

Jim Fragos

Copyright © 2020 by Jim Fragos (Dimitrios Fragkos)
All rights reserved. This book or any portion thereof
may not be reproduced or used in any manner whatsoever
without the express written permission of the publisher
except for the use of brief quotations in a book review.

Printed in the United States of America

First Printing: December 2020

Printed book ISBN: 9798580074351
Electronic book: ASIN number on Amazon only

Dimitrios Fragkos (Jim Fragos)
For permissions to re-print information of this book or related
to that business, you are very welcome to reach the author by

To my beloved wife Sophie,

For a million good reasons, one of which is her support to write this book

Contents
1. Fly over the electronics planet 1

1.1 The elements: Voltage and Current 1

1.2 Resistance: the 80% of all of the ingredients 7

1.3 Switches, LEDs and some connection topologies to
play with…………………………………………. 10

1.4 Passive components fly over 18

1.5 Active components and ICs fly over 24

1.6 Components connecting techniques 29

1.7 Regulators – a first glimpse to ICs 33

1.8 One plus one makes 10: the binary system and the
digital world…………………………………………. .. 39

1.9 Microcontroller anatomy: Exploration of the magic
castle……………………………………… 43

1.10 Arduinos and the Arduino UNO board 49

1.11 Sensors and things that move stuff and display stuff . 57

1.12 Programming: the big picture and one easy program 73

1.13 We just circumnavigated the electronics planet, lets
land and do that again on the ground with a fast car 82

2. Drive fast through the electronics
Wonderland 83

2.1 Voltage and Current real engineering 83

2.2 Resistors recipes ... 89

2.3 Components: Technologies, sizes and where to find
them…………………………………………... 93

2.4 PCBs, soldering techniques and equipment 106

2.5 Further “must-have” knowledge on passive components
and signals .. 121

2.6 Active components and ICs: Regulators and other
useful…………………………………………….. 133

2.7 Analog signals and measuring instruments 143

2.8 Microcontroller anatomy: Deeper exploration of the
rooms of the magic castle .. 153

2.9 The hardware of the Arduino UNO board and others
even greater.. 161

2.10 Some real Arduino circuits with sensors and
displays….. .. 168

2.11 All right, it’s quite embarrassing to ask: What is
REALLY a computer? .. 176

2.12 C++ introduction for the non-programmer 180

2.13 More Arduino programming 187

2.14 A few simple programs to play with 196

2.15 Wireless communications and Internet engineering 212

2.16 Fun has just begun, where to go next 218

3. Appendix 224

3.1 Multiplier prefixes 224

3.2 A real datasheet of an LED 225

3.3 Datasheet highlights of some notable MCUs 229

Whom this book is for
Anyone who is in high school up to a Ph.D. owner in any field. The
level of the mathematics and the physics needed for background is
almost zero. Engineering taught in here is kept at a pictorial level,
math is avoided when not needed. People who are at their first steps
in electronics already, will also benefit a lot from this book.

What can you expect to learn?
 Meet electronics. They will flirt you and maybe you will fall in

love

 Speak the language of Electronics & Embedded Systems
Engineers

 Understand the most needed concepts of hardware and
software in deep level, from the ground - up

 Gain applied knowledge for real-world electronic compo-
nents of the latest technology

 Practical assembly techniques, measuring techniques
and lab equipment are covered

 Understand what a microcontroller is and get your hands on
the one inside the Arduino Uno board

 Make your simple programs and understand simple programs
made by others

 Understand most of the electronics connection diagrams
(schematics) of Arduino projects. You also may detect
imperfections in some of them!

 Make electronic circuits of your design with self-guided
further reading

All understanding will be at a level, amazingly, not of a beginner,
but of an intermediate+ embedded systems hobbyist. The purpose
of this book is to start you up. Your foundations built here will
be placed on the latest of the electronics technology (as of 2020).
Next is diving into the knowledge yourself in the process of making
your projects. You will be able to do that. While building
experience, your first homebrew projects may be trial and smoke
until they work. But this is the self-teaching way, the best to my
opinion. You will need lots of hundreds of hours to practice

knowledge, to gain experience and to soak into details in order to
make a real product for the market. This book will try to give you a
ticket to that. The traveling is up to you.

Learning approach
This book will approach teaching as an adventurous, exploring
journey in two phases for letting more of this knowledge ender into
your long term memory. Phase one: Get the big picture first. Phase
two: Revisit all and go into more details. Equations and
mathematical theory are avoided like hell throughout all of the book,
they are little needed anyway for the 95% of the simple electronic
projects. Pictorial intuition for understanding the cause-and-effect
and how to avoid most common mistakes is where the focus is on.

About the author
The author owns a Physics degree and a Ph.D. in Virtual Reality
technology, but those are overtaken by his love for electronics that
started at the age of 11 as a self-taught hobbyist. In the last 18 years
he is a professional embedded systems designer. He has made on his
own more than 10 commercial or industrial products and has
designed more than 40 worthy electronics projects where design,
prototyping, programming and testing was performed solely by
him. During his carrier within companies, he has trained many
junior engineers. That spawned the experience and the material to
write this book. At the time of writing he is the chief engineer for
the design of educational robots in an awesome company.

You can ask your questions while reading, in a forum created for the
book. “Google” the title of the book + the word “forum” and you
will get there easily enough. I will be happy to read words from you
while you read mine.

Welcome aboard
Let’s get to it! Imagine the knowledge of embedded electronics is a
(round) planet where all civilization is at the equator. We will take
off with a supersonic airplane from some point, see it all flying fast
from above and get the first overall picture. We will land at the same

airport at the same direction we took-off and we will then get on a
super-fast car. We will drive fast through almost all the scenery,
looking it from a lot closer, but yet, we will always move fast, not
having time to see anything in its full analysis. We will see the
fundamental concepts and the big ideas behind each matter in order
to enable our intuition to play with it, not words and terminology
only. Hope lots of fireworks will explode inside your brain.

We will not follow the latest trend “we will make project X” since
the project-driven approach is not going to cover the majority of the
concepts needed to understand and conceive hundreds of projects
out there waiting for you. You should show a little patience to read
a classic kind of book with the motive: I know ≠ I understand and
highly unorthodox in regards to what the “must-have” electronics
knowledge is. We will go from 0 to X with no gaps, you are
welcome to skip parts you already know.

In order to better digest it (with your memory, not the stomach) it
is highly advised to break the reading of this book to four sessions at
least. The “8 hours” on the title suggests an average total reading
time with very small pauses to research or think in between.

A (boring) Legal Notice (that is unlikely to happen):

This book serves as a teaching aid only. Any particular application resulting
in damage of property, loss of property or health damage based on the
information given in this book will not hold the author or the publisher
liable. We make no warranties, express or implied, that the examples, data,
or other information in this book are free of error.

In simple words, you should be careful at all (rare) cases when working with
dangerous voltages or components. In such situations you should know how
to protect yourself. If anything breaks, you keep both pieces.

Electronics is not a dangerous hobby in general. It is relatively not
expensive either. It involves brain and art in and out of a computer
screen, it is, in all of its phases, exciting for all who get to fall in love
with it.

Fasten your seatbelts, takeoff will have some “G”s of acceleration.

p 1 1.1 The elements: Voltage and Current

1. FLY OVER THE

ELECTRONICS

PLANET

1.1 THE ELEMENTS: VOLTAGE AND CURRENT

WIRES

Electronics are about electrons! That wise phrase said, the next
question should be: what are electrons? We physicists, can tell you
with much pride that: we do not have a damn clue what they are!
Really zip, not to the least. But, we know amazingly precisely most
- if not all - of their properties like their mass, charge etc. Let’s
approach their description and their function in the context of
practicality for building circuits only.

All materials are comprised of 3 particles.
Protons, neutrons, and electrons. Together
they form atoms. The number of protons
(which are positively charged) equals the
number of electrons (negatively charged), so
they are electrically neutral. That number
defines what element the material is (there

are 118 known today some of them not stable). Some of the
elements are called metals. Metals are known for conducting
electricity…. What is that?

Electrons are charged. They carry negative electric charge that
attracts (or is attracted by) positive charges and is repelled by
negative charges.

p 2 1.1 The elements: Voltage and Current

In a rigid metal body (or a wire) some of their atom’s electrons move
almost freely around all the metal’s body. Electricity is about
electrical charges (electrons) motion or accumulation of excess
negative charges in an area (more negative electrons than positive
protons) or the opposite.

Note that all this pictorial description made here is oversimplified
but it does our job for the rest of this book. The truth has much
quantum physics involved and we need some books to describe it
fully. Let’s quickly see what the electric current (oversimplified)
is:

CURRENT

Here we will make a picture which may be way too oversimplified
but will explain and visualize in our mind what the current is: We

will only talk about metals,
the electricity conductors.
In metals as said, some of
their atoms’ electrons move
freely. Let’s imagine a metal
wire like a hose inside
which, instead of water,
electrons flow, but like
water they make an
uncompressed fluid. Also
imagine that all of the
hose/wire is filled up totally

by this uncompressed fluid with no gaps inside it. This description
is called “The electronic–hydraulic analogy”. Our total water-like
fluid volume (that is the total volume of the metal) has no
importance. Important is the flow rate that is how much fluid passes
totally by a cross section per time. No matter how wide or narrow
that part of the “hose” is, we care about how many liters per second
pass through there. Back to electrons reality, the volume passed is
the number of electrons that is an amount of electric charge. Electric
charge Q is measured in Coulomb units (one Coulomb is

6241509129000000000 or 6.241509129  1018 electrons), so,
electric current is:

p 3 1.1 The elements: Voltage and Current

𝐼(𝐴𝑚𝑝𝑒𝑟𝑒𝑠) =
𝑄(𝐶𝑜𝑢𝑙𝑜𝑚𝑏𝑠)

𝑡(𝑠𝑒𝑐)
 Where Q is the total charge passed

through our section in Coulomb units, t is the time period in seconds
we have been counting charge passing through (double time, double
Q, same result) and I is the current. Current is measured in Amperes
(A) due to the inventor’s name, one Ampere is flaw rate of one
Coulomb per second. Do not worry about mathematics for the rest
of the book. They will be kept at analogies only, like the previous
equation, easy to remember and as an engineer, you will be inclined
to derive rather than remembering them.

One Ampere of current is medium. It requires about 0.5mm wide
wire made of copper to pass through without blowing or heating the
wire. In low voltages (we will come next to that), if shorted, it will
make a negligible but just noticeable spark. But for the most of our
circuits, since they are low power, it is considered a rather big
amount of current, usually an Arduino requires less than 0.1A total
supply current without any motors connected to it and a small
motor needs about half to two Amperes (Amps). A USB socket of a
computer provides 0.5A maximum current. Our car battery
provides about 10A to light the front headlights and that takes quite
thick wires.

What the current can do:

 It heats up things (the most common failures are due to
materials melting by excessive current that flows through
them)

 It can produce light

 It produces magnetic field around the wire it flows through.
Motors and loudspeakers work using that magnetic
repulsion / attraction.

 It is the “fuel” needed for circuits to work, usually termed
as current consumption.

We may say that if a circuit has veins, current is the blood…

Last… Current has direction of flow, usually displayed with an
arrow

p 4 1.1 The elements: Voltage and Current

VOLTAGE

In our previous shape, there is a pump that pushes our
fluid and makes it move around. If we visualize that
“pushing” as pressure (what we feel on a hose when

we put our finger at the end of it to stop the flow on water) we get
the concept of the Voltage. Voltage is roughly how much “tension”
there is to move electrons. It is measured in units of Volts
(Alessandro Volta) and is present as a “tension” or “pressure” even if
there is no wire (hose) connected (to the pump). We may think that
the pump never stops rotating, never turns off.

One Volt (V) is a small “voltage” but very easy to measure precisely
enough (e.g. to know if it is within 0.999V to 1.001V) with very
common instruments. Most of the circuits using microcontrollers
work with 3V to 5V voltage. We may start feeling the slightest of
an electric shock if we touch over 30V with our fingers.

Current as we said earlier, is the flow rate. Voltage is the “pressure
difference” between two points and may be produced by:

 A battery that uses chemical reactions

 An electrical generator that alternates magnetic field
intensity around wires

 Stored electrical field (in our body in dry atmosphere when
we rub with woolen clothes, or in charged capacitors)

 From light using photovoltaic cells

And other means.

Voltage has no direction (as current has) but one of the two of its
points (poles) has higher “pressure” and the other has “lower” and
they are symbolized with the + sign for the higher and the – sign for
the lower. We may think it as “sucking” fluid from the “-“ point and
expelling it from the “+” using the pump analogy.

p 5 1.1 The elements: Voltage and Current

CIRCUITS

In our electronic–hydraulic
analogy, our fluid needs a
closed loop hose to flow
since the pump in our
previous shape only recycles
the fluid inside our hose. A
wire that makes a closed
loop is called circuit or
closed circuit. Open
circuits have zero current
flowing through them.

Voltage is what causes current (the flow). The more it is, the higher
the current is (the flow rate) if flow can be made at all (if e.g. there
is a closed wire (hose) around the two points of Voltage). Voltage
usually does nothing if there is nothing connected to it to make a
closed circuit.

Let’s stop drawing pipes and move on to how we draw circuits.
Wires are drawn by simple lines and each
of the components connected (like the
pump previously) have their own
symbol. For instance the symbol of a real
Voltage generator (i.e. a battery) within
the same circuit as the one discussed
earlier is the one on the left. We draw

circuits that way for understanding to the best what is connected to
what. These are called schematic diagrams or just schematics.

A FEW VERY IMPORTANT THINGS ABOUT CURRENT AND VOLTAGE

In order to measure voltage we just touch the two
probes of a Voltmeter at the two poles of our
Voltage source. We will get to measuring
instruments and techniques on chapter 2.7.

p 6 1.1 The elements: Voltage and Current

In order to measure current we have to break our
circuit and by-pass the flow of electrons through
our instrument (Current meter) which acts like a
wire

In the circuit on the left the current is the same at
any point we measure it. That’s because the
“electrons fluid” is uncompressed so it cannot be
accumulated at any area of our circuit neither it
can “evaporate” or be lost in areas. The same
number of electrons pass every second from any

cross section of it.

The current flowing in a circuit may be split and re-combine. Its
non-compressible and
lossless nature makes it like
an ideal river of water which
may split to branches and
recombine. When recombined,
all the water of the (ideal) river
should have exactly the same
flow rate as before the
branching. In the circuit on the
left, after flowing through the
branches, the current becomes

the same as before. At the branches it splits in a way that no flow is
lost, that is I1+I2+I3 = I and I4+I5 = I

Voltages add-up when connected in series, the
“+” to the “-“, so they push electrons to the same
direction. Two batteries 1.5V each in series
make a voltage source of 3V. If voltage sources
are connected opposite sides (“+” to “+”) they
cancel each other and the total voltage is the

subtraction of their voltages.

So far we said about almost nothing “touchable” but rather “spooky”
things about invisible electrons. Hung on, components are soon
coming.

p 7 1.2 Resistance: the 80% of all of the ingredients

1.2 RESISTANCE: THE 80% OF ALL OF THE

INGREDIENTS

In our good electronic–hydraulic analogy, the pump (voltage) is what
pushes the fluid. Imagine now that the hose or hoses it passes through
are not very wide, so they provide (according to how thin they are)
resistance in the flow. The flow rate then should be higher, the higher
the pressure (voltage) is and lower the higher the total resistance is. A
German guy called Georg Ohm said in 1826 that current is proportional
to the voltage (e.g. doubling the voltage doubles the current) and
reversely proportional to the resistance (e.g. doubling the resistance
halves the current). This is the ultimately most important law in
electronics and is expressed as:

Ohm’s law: 𝑰 =
𝑽

𝑹

We will fall on this so simple law (equation) in almost every page of the
rest of this book, resistance is everywhere in electronics. Ohm’s law
correlates 3 things, current, voltage and resistance, so if we know the
resistance we know the relation between current and voltage and if we
know any two of those we derive the third. We may re-state Ohm’s

law as 𝑽 = 𝑰 𝑹.

The measurement unit of resistance is the Ohm (or Ω that is the Greek
Omega). We may make the last re-arrangement of the Ohm law in the

form 𝑹 =
𝑽

𝑰
 and say that 1Ohm equals to that resistance that makes

1A of current flowing through it when 1V of voltage is applied across
it.

RESISTORS

Resistors are the most common component in
electronics. Their purpose is to provide exactly the
amount of resistance we deliberately need at any
point in a circuit. They come in their older form
(from around 40’s to 80’s called “through hole”)
of a component with two wires and in their more

recent form (about 2-3 last decades, called SMD) of surface

p 8 1.2 Resistance: the 80% of all of the ingredients

mounted components. We can find resistors from less than 0.1
Ohm to 10,000,000Ohms values very easily. They also are of the
stuff to do the happiest shopping for, since they are the cheapest of
all electronics components, so ridiculously cheap that each costs less
than a cent usually. Intentional usage of resistance (resistors
placement) is often used to: limit current, set current to a value we
want, reduce voltage and many-many other functions we will be
seeing throughout the book.

KILO, MEGA, GIGA

An average resistor’s value is about 10,000 Ohms. Big ones are
1,000,000 Ohms and over. In order to avoid writing and counting
all those zeros you make take a look at the appendix 3.1 for the Kilo,
Mega and Giga prefixes. For example 2400 Ohms is written handily
as 2.4K Ohms or 2.4K or 2K4 for avoiding mistakes of not noticing
the dot.

UNINTENTIONAL RESISTANCE

There are times where we meet resistance where we do not want
to. Unfortunately resistance is practically everywhere, whether we
want it or not depends on how much it is. Every metal, or wire has
some unwanted resistance, very small, and it is higher the longer it
is, lower the wider it is. 1mm wide 1 meter long copper wire for
example has 0.021 Ohms resistance. Resistance is also found in
almost all electronic components as an unwanted parameter
(sometime in the region of 10s of Ohms). Many components or sub-
systems behave as resistors, like lamps, loudspeakers, heaters and
others, where their resistor is considered as “load”. The less Ohms
it is the more current is required to flow through that component to
work well or the more current it “consumes” for providing its
functionality.

p 9 1.2 Resistance: the 80% of all of the ingredients

CONNECTING RESISTORS TOGETHER

 On the left we see a schematic comprising of
one resistor only. The schematic symbol of the
resistor this: but rarely used is also
this one: In the particular circuit
we can calculate the current I (the same passing
through all of this loop of wires, battery and

resistor) by the Ohm’s law, as I=V/R = 3V/1200Ohm = 0.0025A
(or 2.5mA per Appendix 3.1).

In the circuit on the left, we have two resistors
in series. Resistors in series act like one
resistor. How big should that be? Well, the
current flow meets one narrow path and then
another narrow path, so the total resistance is
1.2K+1.2K = 2.4K. Resistors in series add
up. Applying Ohm’s low using that total
resistance we find the current I to be
I=3V/2400Ohm = 0.0015A (or 1.5mA), yes,

the half.

Let’s see what resistors connected in parallel do. Current I will
branch into I1 and I2 (I=I1+ I2). Since there
is a narrow path and next to it in parallel
another narrow path, the current flows
easier now than having one narrow path
only. In our case the total resistance is
the half of 1.2K (it equals 0.6K). Current
I is therefore I = 3V/600Ohm = 0.005A
(or 5mA) (half resistance makes double

current). In chapter 2.2 we will come back to how we calculate the
total resistance of resistors in parallel which may not be of the same
value as in the previous case.

Still resistors look like they offer nothing exciting. Let’s move to
some switches and lights.

p 10 1.3 Switches, LEDs and some connection topologies to play with

1.3 SWITCHES, LEDS AND SOME

CONNECTION TOPOLOGIES TO PLAY WITH

SWITCHES

Most of you should know, or figure out what a
switch is. It gets in the path of the current flow
and permits or disrupts the flow, as its symbol
very clearly suggests (the S1 on the left).
Alternatively we may say that it opens /
closes a circuit. There are many forms of

switches, to which we will come later.

ON-OFF SWITCHES

The form described earlier has two poles (pins) and two states, ON
and OFF. There are two usual kinds of switches like this, the ones
that stay at the state set and the ones that are at the one state (ON
usually) as long as we press them and return to the other state when
we release them. Those are the buttons, their symbol is like this:

Their electrical function is the same.

Following are some real ON-OFF switches. Their size has to do with
the maximum current they can handle and with how big we want
them to be (e.g. in industrial environments we may need a very big
emergency stop button for easy access to it, regardless if very small
current may be flowing through that switch. Same for elevator
buttons for example. In a miniature circuit we may choose one of
3X3mm dimensions)

Medium current (usually around 1-3A) lever
switch

Higher current (around 5A-15A) rocker
switch

p 11 1.3 Switches, LEDs and some connection topologies to play with

Slide switch (0.3A – 4A usually)

Dip switch, that is a package of many (1 to 16)
switches, each holding very low current
(around 50mA only)

A jumper that is placed on two adjacent pins
and keeps them shorted as long as it is there

A button, a big one

A medium to big size tactile button. Tactiles
are buttons which when pressed do a “click”.
Examples: buttons of computer mouse,
volume buttons on smartphones

Other common tactile buttons. Note: if they
have more than 2 pins some of those are
internally connected and act as one (e.g. a 4
pins has two pairs internally connected and acts
as 2 pins)

A membrane keypad consisted of many buttons
on a flexible and adhesive material about 1mm
thick with custom printing on its surface

ON-ON SWITCHES AND OTHER KINDS

Following is a list of the most common types of switches. Their
schematic symbol is self-explanatory of their function. It also

indicates how many poles (pins) each kind of
switch has. The concept introduced here is that of
a selector, rather than only a breaker/maker.
The simplest of those is the one named ON-ON or
SPDT symbolized as on the left with 3 pins. It has

two posistions (states). At one of those states it connects pin #2 to

p 12 1.3 Switches, LEDs and some connection topologies to play with

pin #3 and at the other state it connects pin #2 to pin #1. Note that
if we leave pin #3 unconnected, it behaves like the ON-OFF switch.
Lets see the most common of switches kinds and how they are
named for finding them in the market.

Symbol Examples Names

See all the above

SPST (single pole single
throw) or ON-OFF

SPDT (single pole double
throw) or ON-ON or 1P2T

DPST (double pole single
throw) that contains 2 ON-
OFF mechanically coupled

DPDT (double pole double
throw) or 2P2T that
contains 2 ON-ON switches
mechanically coupled

There are many other kinds of switches such as 6 positions rotating
switches e.g. 1P6T but we keep with the practical and frequently
used components only.

When we select a switch, we take into account, the fitting to our
board or panel, the looks, the cost and most importantly if it
withholds the maximum current that may pass through the
switch, e.g. if the max current is 0.8A we should chose a switch
with specification of 1A or more.

LEDS

At last we are in one of the most exciting and beautiful components.
The LEDs with that deep, almost magically colored light.
Starting doing a little of categorizing stuff, we may separate them in
powerful, usually white colored LEDs for lighting up a space (like a
230V ceiling lamp consisted of LEDs, LEDs flashlight lamps etc.)
and to indicating LEDs used not to light their surrounding

p 13 1.3 Switches, LEDs and some connection topologies to play with

environment but rather themselves, usually with a color, to indicate
something. We will deal with the second category.

So… what does LED mean? L.E.D. stands for Light Emitting
Diode and is pronounced “el ee d”. What is a diode? We will see
this more on the next chapters, it allows current to flow in one
direction only and is symbolized with: LEDs are symbolized

with:

The most distinctive feature of LEDs compared to hot filament
lamps is that LEDs do not heat anything to thousands of degrees
Celsius to produce light but rather they use a quantum physics
phenomenon of electric field and electrons (electrons have only
discrete energy levels, light’s photons have discrete energy levels
also) to produce single frequency light (actually spread around a
single frequency but only a little bit). Light is an electromagnetic
wave, single frequency is equal to single wavelength, is equal to single
color of the infinite colors we see on the rainbow, or more
technically, a single narrow band of the visible spectrum. That makes
their nice looking light and the need of very low power per light
they produce. The indicating LEDs practically do not heat up.

LEDs usually come in red, orange, yellow, green, blue and white
color. A special case is white color LEDs which internally consist of
a red, a green and a blue LED. There are also RGB LEDs which are
again a Red, a Green and a Blue packed on the same case but

p 14 1.3 Switches, LEDs and some connection topologies to play with

providing each LED’s pins (leads) to drive them separately.
That way we may produce any color. Besides LEDs emitting
visible light, there are also LEDs that emit light just outside of

the visible spectrum of light, below the red color frequency
(infrared or IR) and rarely just above violet’s frequency
(ultraviolet). Infrared LEDs produce strong and invisible light and
are used in TV remote controls, proximity sensors, optical mice and
cameras that can see at the dark. The most classic LEDs are the

cylindrical shapes of 5mm and of 3mm diameter with
a lens on the top, made either from clear (transparent)
material or of a colored material that diffuses light. Their
usual cost is around 5 cents each for ordering some

dozens of them.

Let’s go to the Voltage and Current issues in order to light up an
LED. LEDs need around 1.5 to 2.8V to operate (each model
(manufacturer part number) has its own). Below that voltage no
light comes out, but applying just about 0.5V more voltage than that
is catastrophic, the LED gets burned. The current an LED needs is
usually 20mA maximum (to shine fully) and any current less than
that flowing through it produces proportionally less light (e.g. 1mA
will produce the 1/20th of the full light potential). It is suffice to say

now that every LED needs a resistor in series to set
the LED current to the value we want it to be and protect
it from rising the voltage across its pins beyond the
maximum. In chapter 2.5 we will come back to this to
see how we calculate the value of this resistor (that is
usually in the region of 30 to 300 Ohms). LEDs, as
diodes, have only one direction for current flow. The two
pins of a diode or an LED are called Anode and Cathode,
current flows from the Anode to the Cathode. The

voltage applied to them must have one “direction” only, higher at
the Anode and lower at the Cathode, otherwise no current will
flow. The “direction” of voltage (which one of two points is + and
which one is -) is called voltage polarity and has to be respected.

p 15 1.3 Switches, LEDs and some connection topologies to play with

LET’S PLAY WITH SOME CIRCUITS

First of all, we will explain another concept for circuits that is
critical. It is that of the “node”. What a node is: It is all pins that
are connected together by one or more wires. In circuit’s
schematics, wires are ideal wires, meaning they have no
unintentional resistance. If any practically meaningful unintentional
resistance was there (wire’s resistor) it should be displayed with the

resistor’s symbol. On the left we
have a circuit with 3 nodes. No
matter how long wires we use in
our schematic e.g. making the
simplest path or making a maze
with the wires of one node, it is still
the same one node, all pins it
connects are connected the same
way, as if they are connected
on a single point. The reason
this happens is that a zero resistance

conductor has the same voltage across any of its points since
(considering it is a resistor) V=I*R where R=0 so V=0 regardless
the current’s value. For example at the previous circuit, voltage is
the same for points A, B, C and D. If we touch the one probe of our
voltmeter (multimeter measuring voltage) at A and the other at D,
the voltage measured will be zero. If we touch one probe to any
point at node 3 and the other probe to any point of node 1, the
voltage measured is going to be always that of the battery.

A note: since it is tedious to say every time “voltage across point X
and point Y” we use to name the negative pole of the battery /
supply “ground” and refer always to this as the negative point. That
way we may say “Node1 has voltage X Volts” implying across ground
that is node 3. Ground symbol is:

About the current there is a different story. That may branch at a
node to separate “rivers” or be merged, as described in the chapter
1.1.

Let’s meet our first real circuits! We will use them all for
understanding connection concepts, from simple to more and more
complex. Their full understanding is very important.

p 16 1.3 Switches, LEDs and some connection topologies to play with

1.Both buttons (S1 and S2) have to be
pressed (concurrently) in order to light
the LED

2. The same applies for any “sequence”
of placing components which are in
series

3. Pressing ANY of the buttons, the LED
will shine. Same if both buttons are
simultaneously pressed.

4. A very bad idea! In an ideal world of
components and wires, pressing the
button will provide the current a path
that has zero resistance. The less the
resistance, the higher the current, so
infinite current (I = 3V/ 0Ohms) will be
a disaster. Sorting a battery is bad for its
health and perhaps for the health of the
switch (max. current specification) and
maybe for seeing thin wires melting after
burning their plastic insulation. If the
voltage source is a power supply it may
be damaged at prolonged time or it may
use a protection (e.g. resettable fuse) to
cut off the current itself. That’s about
sort-circuiting a voltage supply…
(connecting the voltage poles with very
low resistance)

p 17 1.3 Switches, LEDs and some connection topologies to play with

4. When S1 is “down” as seen on the
schematic, the total resistance is R1+R2
= 440 Ohms. When S1 is “up” the total
resistance is R2 = 220 Ohms. So in the
“up” position the LED’s current should
be the double and the illumination of the
LED will be double than in the “down”
position.

5. Pressing the button (S1) will provide
an alternative path for the current
around R1 with zero resistance, so the
total resistance in series to the LED will
be 220 Ohms (=R2+0). Releasing the
button will make a total resistance in
series to the LED equal to R1+R2 = 440
Ohms. So… Button released, the LED
shines, button pressed, LED shines with
twice the illumination.

6. When both S1 and S4 are
pressed D1 shines. When both
S2 and S3 are pressed D2 shines.
You should not press
simultaneously S1 and S2 or S3
and S4 of course

Those have been just some introductory concepts with broader
applications to most of electronics. Playful and practical enough
themselves. But it is surely limited what we can think of having only
LEDs, resistors and switches. Let’s open some more chests with toys
to play with…

p 18 1.4 Passive components fly over

1.4 PASSIVE COMPONENTS FLY OVER

A classification used for components is to divide them between
passive and active. Passive components usually have 2 pins and they
do always the same action to Voltage and Current depending on the
value of those two or to how they change over time. For example,
the resistor regulates the current that passes through it according to
the voltage across it. A 1K resistor, any time it has 2V across it, it
will have 2mA of current flowing through it, every second, every
hour, every year.

Active components on the other hand allow controlling. What they
do depends on a “controlling signal”, so they are not so “dump”.
Imagine as an example, a switch with an input pin that turns ON or
OFF depending on whether that pin has non-zero or zero voltage.
Imagine a whole computer inside a single component (chip). We
will come to them on the next chapter.

Passive components are everywhere in electronics circuits. Let’s
learn about them starting from the most frequently used going
gradually to the less and less used.

CAPACITORS

After the resistors, the most frequently met component is the
Capacitor. Unfortunately its behavior is not as simple as the
resistor’s but this world is not simple anyway…

The capacitor’s symbol is: and the letter it is used for
abbreviation is (you guessed right) “C”. So… what does the
capacitor do? We will describe it in vague terms and in
approximation in this chapter.

Capacitors store temporarily energy (electrical), hence their name
suggests how much energy they can store. The physical effect is
called capacity. It’s really like the capacity of a car’s reservoir in
fuel, but instead of gasoline, it is literally electrons. Think of them
as tiny rechargeable batteries, but really small. If a battery can store

p 19 1.4 Passive components fly over

X energy a capacitor of the same size can store about X/100,000
energy! (Exceptions are “ultra-capacitors”, which you will almost
never find in a circuit, with record X/100). Moreover capacitors
are usually tiny in size, the energy they can store usually lasts for
milliseconds or microseconds, yet they are very much useful,
practically in every 3 - 5 components, one is a capacitor.

Like resistance is measured in Ohms, capacity is measured in
Farads (F) (coined after the English physicist Michael Faraday in
the 1860’s). An average capacitor found in an electronic board is

around 1μF (microFarad = 1 millionth of a Farad – see Appendix

3.1), ranging in practice from 1pF to a few thousands μF. But they
are not characterized by the capacity only. They are also
characterized by the maximum voltage they can handle in Volts.
Let’s see how they look like.

A capacitor is formed by pacing two metal
plates close to each other, keeping them
electrically insulated.
Small ones made from ceramic materials
ranging usually from 10pF to 10uF
tolerating form 10V to 50V. They cost
around one cent.

The biggest ones are called Electrolytic
Capacitors (they use electrolysis). They
range from 10uF to about 10,000uF.
Their problem is (besides other
problems) that they have polarity, one pin
(lead) has to be always more positive than
the other otherwise they brake (with a
little explosion sometimes!). Their
symbol is:
 or

Let’s take a glimpse of what capacitors do. Imagine them as a
rechargeable battery with the following differences: They charge –
recharge quite fast, even in a few nanoseconds (0.000 000 0001
seconds), they can be charged and discharged infinite times without
any effect in their service life and as said earlier the charge they can
store is about a million times less.

p 20 1.4 Passive components fly over

Capacitors store electric charge (electrons) inside them. Like
batteries (but using a way simpler mechanism than chemical
reactions) when current flows through them, the “charging level”
increases proportionally to the voltage across their pins.

Let’s see how we may charge a
capacitor (tip: no wall plug charger is
needed):

Let’s assume switch S open and
capacitor C not charged initially. The

Voltage across its pins should be VAB = 0V. Let’s close the switch
and start counting the time (time in
our stopwatch when we close it is 0
seconds). Initially the capacitor will
have VAB = 0V, so the resistor R will
have 5V across its pins. The current I
at time t=0 will be equal to I = V/R
= 5V/1000Ohm = 0.005A = 5mA.
On the table on the left is how the
Voltage across the capacitor (VAB)
and the flowing current will evolve
over time. We will come to
analytical formulas for doing those
calculations in chapter 2.5. So we see
that our “battery” charged to about
60% in 0.001 seconds and to 100% in
about 0.01 seconds. After that time
our circuit is like the circuit on the
left. No current is flowing (having
zero Volts across R) forever until we

start somehow drawing current from our “battery”.

Let’s use our charged battery now to
power something (discharging our
capacitor). Let’s put a resistor for this.
Assume C is fully charged. Closing the
switch again at the time we start our
stopwatch we get the mirrored results and

yes, our “battery” discharges in 0.01seconds. Increasing the resistor

Time
(sec)

VAB (V) I (mA)

0 0 5

0.001 3.161 1.839

0.002 4.323 0.677

0.003 4.751 0.249

0.004 4.908 0.092

0.005 4.966 0.034

0.006 4.988 0.012

0.007 4.995 0.005

0.008 4.998 0.002

0.009 4.999 0.001

0.01 5.000 0.000

0.011 5.000 0.000

0.012 5.000 0.000

p 21 1.4 Passive components fly over

the charging and the discharging times increase, increasing the
capacity they also increase (proportionally: doubling of any of them
doubles the time). Having this quantified example makes us more
familiar to the behavior of a capacitor, but, is this any useful? How
can the capacitors be the 1/3th of all electronic components?

In about the 95% of the cases a capacitor is used in practical circuits,
is to provide a “charge reservoir”. All such uses stabilize the
voltage that supplies something i.e. the voltage will never fluctuate
a lot. One use is to stabilize voltage fluctuations happening by very
sudden current fluctuations. Digital circuits require sudden current
supply of tens milliamps for sort times. How short? Nano seconds
only. A close-by capacitor will act as a local battery that will be
discharged by a negligible percentage while it provides such sudden
and sort period current demands. Another use of a “reservoir” is to

stabilize a fluctuating voltage. Imagine
a voltage used to supply stuff (like our
previous batteries) that ripples
(fluctuates a little). Let’s assume that
the supply voltage fluctuates from
4.9V to 5.1V every 1usec, or 1milion
times per second. Such frequencies are
classic in switching power supplies. At
such time scales, the discharging of this
capacitor with this resistor
combination (that is also 1K / 1uF as in
our previous example), evolves over
time as we see on the left (notice time
is now usecs). We see that in 1usec
period, VAB fluctuates so little in

comparison to the supply voltage fluctuation. This is because our
capacitor has so much charge reserved (like a big battery) that been
discharged by so little, it holds its voltage practically steady.

Those had been simplified (with real numbers) illustrations in order
to see some of the capacitors applications without their details, but
to feel how they work.

Time
(usec)

VAB (V)

0.0 5.0000

0.2 4.9990

0.4 4.9980

0.6 4.9970

0.8 4.9960

1.0 4.9950

1.2 4.9940

p 22 1.4 Passive components fly over

DIODES

Don’t worry, diodes are not as complex as capacitors. They are
actually a lot simpler that almost all components.

They allow current to pass only in one direction, yes, their symbol
is “D” but the names of the two pins it has are bizarre, they actually
come from the vacuum tubes electronics era (old screens name
“CRT” is for “Cathode Ray Tube” for example). This is how they
behave according to the voltage polarity across their pins:

The real world diodes unfortunately have not precisely this ideal
behavior, we will see their deficiencies and diode kinds in chapter

2.5. It is now suffice to say that when
they are “forward biased” as in the left
of the above circuits, they “drop” the
voltage by a bit (about half a Volt) as if
they are containing an internal battery
like the circuit on the left.

Let’s see some:

They usually carry a mark of a dash for the cathode pin (just like the
dash in the schematic symbol). They are mostly characterized by the
maximum current they can tolerate since that makes them heat up
(more or less their size is following that).

p 23 1.4 Passive components fly over

COILS

Coils are the magic of electromagnetism. Turn any wire like a
“spring” shape and you have a coil! Add a piece
of magnetizing material in it (like iron) and
you have a coil with a core that has more “coil”
activity. Here are how some pre-fabricated

coils look like, which you can buy ready to use:

Coils are less frequently used (expect one every 30 components)
and that’s fortunate because their way of working is quite hard to
understand. We will pass them quickly.

The physical effect they do is called inductance and is measured in
Henry (H) after Mr. Joseph Henry in 1870’s. Usual coils range in
a few uH (micro Henry). Another specification is the maximum
current they can tolerate.

The magically complex work of inductance is this: It reacts to
changes of current flowing through the coil by generating a voltage
across its pins (leads) that will make it hard for the current to
change. It also behaves like a battery in the concept of “charging” and
“discharging” but instead of how much charge it has stored, it is
about how much current (Amperes) are flowing through it.

Actually coils (inductance in general) store electrical energy in an
internal magnetic field they generate that is stronger the more
current is flowing through their wire. The practical uses of the coils
are:

o To stabilize current when that fluctuates unintentionally or to
cut off any signals alternating in high frequencies.

o Mostly: to do the magic to raise, lower or invert a voltage
without losing energy in heating itself. How? Let’s see about
raising the voltage. When the current in a coil drops, it raises
the voltage across it in order to make it hard for the current to
drop and that voltage rising can be exploited in the so called
“step-up DC/DC” converters (visited in chapter 2.6).

p 24 1.5 Active components and ICs fly over

1.5 ACTIVE COMPONENTS AND ICS FLY OVER

The more we travel the electronics planet, the more useful stuff we
find. Active components are - at last - components which can
“control” stuff or do operations from the very least to very high
intelligence.

They divide in discrete parts and integrated circuits (ICs) or chips.
The latest are comprised internally by the first. So let’s begin with
the discrete components which are the ingredients of the ICs.

FETS & MOSFETS

MOSFETs are the most important control element of all modern
electronics. Computers are literally comprised of MOSFETs, quite
a lot though. They are the “bricks” of the digital electronics. What
are they?

Metal Oxide Semiconductor Field Effect Transistors (MOS-FETs)
are switches (ON-OFF kind) made of Silicon (Si) with a control

input. The voltage at the control input sets the
switch ON or OFF. The switch may open or close
circuits that set the voltage of other control inputs
(implementing digital “logic”) or they may just
“drive” high current demanding loads such as big
LEDs motors etc. The control pin is called

“Gate”, the switch’s poles are called “Source” and “Drain”. The
important control voltage is the voltage across the Gate and the
Source pins (VGS). If that is lower than a value (around 2V) the
MOSFET is an OFF-state-switch doing nothing. When VGS is higher,
Drain is connected with the Source. The most practical application
of using MOSFETs is to turn ON or OFF powerful things like
motors, big lamps etc. which require a current flow from hundreds
milliamps to many amps using very small current to create this VGS
voltage. Actually this current is negligible, it is practically zero. We
use a small power source that is controlled by “logic” as we say in
digital electronics to control a big power source, just like we control

p 25 1.5 Active components and ICs fly over

the motor of our car with a negligible force in our foot on the gas
pedal.

MOSFETS are divided in two main categories, N-channel and P-
channel. N-channel require the Gate voltage to be more positive
than the Source voltage (usually their Source is connected to the
negative pole of the power supply / battery that is the ground), P-
channel do the opposite. We will dive into the details of them later,
for the moment, following are their schematic symbols and some
pictures.

The main specifications for choosing the right MOSFET are the
maximum current its switch can hold and the VGS Voltage threshold
required to turn on.

TRANSISTORS (BJTS)

In December 1947 at the Bell Telephone Laboratories the course of
electronics changed from Vacuum Tubes to tiny parts made of solid

material (silicon mixed with some other)
called solid state electronics. Those had
been the transistors. (More accurately
Bipolar Junction Transistors, since FETs
fall in the transistors category also, but it
is used to call them just “transistors”).

Transistors do what FETs do but they do
not act according to a control voltage but rather
they act according to a control current. Their 3
pins are called with the strange names: Emitter,
Collector and Base. The control current enters the
Base and exits on the Emitter. It must be over some
threshold in milliamps (around 1/20th the current

p 26 1.5 Active components and ICs fly over

that passes through the switch) in order to turn the switch ON.

There are two types: NPN (Negative Positive Negative) and PNP

The most used ones are the NPN type. MOSFETs nowadays are
more common in electronics than transistors (BJT) since they are
more ideal switches than BJTs as they practically do not require
current to keep the switch ON. We couldn’t leave not mentioning
the transistors though in a book about electronics. What actually
happens in the silicone that makes them work (also the FETs) is in
the field of “solid state physics”. We avoid analyzing stuff so little
that it cannot be understood. It’s a long story about “electrons
mobility” and electric fields in the worlds of the atoms. It is the
nucleus, the essence of electronics, but it should take some chapters
to be fully presented. Its magic physics.

A final note is, both FETs and BJTs do not act as switches only but
also as amplifiers when they barely switch ON. This is not used in
practical electronics nowadays, with negligible cost we buy
amplifier chips doing that job, in the 99% of the cases a lot greater
than single transistors.

INTEGRATED CIRCUITS (ICS)

Let’s meet our first Integrated Circuits (ICs or chips). Since 60s
more than one transistor is fit inside a small
part of silicon. Resistors and capacitors are also
fitted. At the later years we count over a billion
transistors in a silicon piece (called silicon die)
of sizes about one inch by one inch. The
technique of making those is the grail of our

digital civilization. Each element of an IC is not made individually.
Masks are used, having all of them as drawn patterns, light shines
with the silicon die underneath, photochemical reactions take place

p 27 1.5 Active components and ICs fly over

and all the chip is made after doing that sometimes with different
masks and chemicals. No matter how many transistors are drawn on
those masks, like making a photocopy, if the paper we are copying

contains one line or a thousand shapes, the
labor and the process time are the same. The
silicon die is packed in a case like the one on
the left connected internally by very thin
wires to the outside pins. There is a diverse
variety of IC cases or packages. Some
common are:

SMD or SMT (Surface Mount Technology)

THT (Though Hole Technology)

ICS USEFUL FAMILIES

ICs do almost everything voltage and current can do in our wildest
imagination. The measure of the skills of an electronics designer at
providing most practical (simpler) and economical solutions is
mostly about her/his knowledge and experience on which chip on
the market will do the job best. At the time of writing this book, the
(perhaps biggest) components distributor (e-shop if you like)
digikey.com lists 713190 IC models, 42085 of those sited as “new

p 28 1.5 Active components and ICs fly over

products”. That is not to scare but to make the filling of living in
Alice’s wonderland where we can point our mouse on this link
and click it. Let’s see the most interesting ICs categories from the
simpler to more and more complex:

 Regulators: They manage to
convert a voltage from one value (input) to another
(output) that is well-defined and steady, even if the input
voltage varies. Those supply well our circuits.

 Amplifiers and comparators: They amplify or compare
analog signals (any voltage value within reasonable range)

 Load switches – H-bridges: They provide easy control and
high current outputs to current demanding devices like
motors, big LEDs etc.

 Digital logic ICs: There is a diverse variety of simpler logic
ICs like logic “gates”, serial to parallel conversion, pulse
output of special timing etc.

 Sensor ICs: Sensors measure a physical quantity (like
temperature) by converting it to electric signal like a
voltage we can measure, or to a digital information we can
use. Some sensors are integrated inside ICs providing
advanced functionality in many fields of measurements.

 Microcontrollers (MCUs): The core of all modern
electronics called “embedded electronics”. They embed
a computer (CPU and memory) and many “peripherals”
such as communication interfaces, analog to digital signal
converters, timers and others. They are the core of this
book. They are coming after 3 chapters. Hung on…

 FPGAs: Magic chips where you can define (program) how
they will internally interconnect to form any digital circuit
you want. But they are complex and rarely needed in
practical electronics, let’s catch them later when we do

special NASA missions 

p 29 1.6 Components connecting techniques

1.6 COMPONENTS CONNECTING TECHNIQUES

Let’s take our first steps in the path that goes from “learn” to “make”.
How do we really make circuits?

For start we must consider: a) there is not one way and b) there are
a lot of levels between a circuit made in our garage for fun and a
circuit recently produced by Apple (except “Apple I” also produced

in their garage ). We are focusing in practical electronics. Let us
now take a view of the simple, easy and playful ways to build, or
“make” our circuits, as the “maker” term is the recent trend. We
will present higher level methods (more reliable, hi-tech and
professional) in chapter 2.4.

BREADBOARDS

The easiest and dirtiest way to
make a circuit fast is to use a
breadboard, THT (through
hole) components and some
wires. Breadboards have a
really bizarre name and they
are like the one on the left.
They cost around 2$ and have
quite a lot of holes. The way
they work is quite genius. If
you insert a wire or a pin in any
of those holes, it is held in place
by metallic sideways springs
which also connect it
electrically to each of the
neighbor pins we see in the left
pattern. Finally projects made
on a breadboard tent to look
like that on the left. The best
thing about them is that we do
not harm the components (no

p 30 1.6 Components connecting techniques

soldering, not even cutting their wires) and they can be easily
removed and re-used. Another is the record quick time to make
them. On the other side, they are bulky, not very reliable (oxidized
pins, loose spring conducts or not fully inserted pins are causes) and
become like a spaghetti soon enough. Generally what you make on
a breadboard is specified to work only on the table where you made
it. Let’s see some examples from schematics to breadboard

implementations to understand them better.
The program used to make the images is the
great open source software called Fritzing
(fritzing.org). I am grateful to this team for
that.

Let’s start with the circuit on the left. An
implementation can be the following one:

Of course many other combinations can make
the same exactly circuit. A handy feature of
breadboards is that their design allows to place
ICs like the illustration on the left and populate
around them easily many components.

But if you have ever seen the least of an
electronics laboratory (lab) you have surely

seen a soldering iron in action. Soldering is the way to make more
reliable and compact circuits.

p 31 1.6 Components connecting techniques

PCBS

When we say “electronic board” we mean
Printed Circuit Board (PCB) with electronic
components mounted on it. This is the top
way we may construct our circuits. The
components are all soldered as we will see in
the next paragraph. PCBs are a flat, insulating
and heat resistant material, with patterns
made of copper foil on its surfaces that
connect component pins together. So instead
of wires we have a rigid body with
conductive tracks running in complex

patterns connecting point to point. We will present them
analytically in chapter 2.4

SOLDERING

To solder you need solder! Solder usually comes in wire form made
of a metal that melts easily (at about 200oC = 400oF). Such
temperature is found on all flames (usual flames are 4 times hotter),
on an iron for cloths, on a cooking stove. It’s a far lower
temperature than the thousands of degrees on electric arc welding
or oxygen welding, yet it welds (solders) some metals like copper
and nickel very well. So, if a soldering iron tip touches your hand

you might and you might not
get a minimum burn.
Soldering Irons are devices
which heat a tip at the right
temperature to melt solder
wire and their tip is at the
right geometry to interact
with electronic components
of some size. It requires

some exercise to create some skills on it, but it takes only a few
hours of exercising to become skillful enough. The process of
soldering is terribly simple. The solder wire is solid when it’s colder
than its melting point (room temperature) and liquid in temperature
over its melting point. While it is liquid it flows like a small drop of

p 32 1.6 Components connecting techniques

water on the tip of the soldering iron.
We move that drop where we should
in order to join together wires, pins,
copper pads on PCBs etc. (we will
come later on those), remove the tip,
wait a fraction of a second to cool
down and that drop is solid, frozen at
the place we left it, holding the parts
together. Any smoke coming out is

fumes from a
substance added in
the solder wire

called “flux” that helps flowing when it is melted. It should be
avoided to inhale, it is not too dangerously toxic though. We will
fill all the important details about this technique in chapter 2.4.

p 33 1.7 Regulators – a first glimpse to ICs

1.7 REGULATORS – A FIRST GLIMPSE TO ICS

Almost every useful circuit contains at least one regulator. In this
chapter we will take a quick look at regulators and exploit that
opportunity to introduce more Electronics Engineering language
(terminology) and how ICs specifications look like in their “user
manual” called datasheet.

What do regulators do?

Our circuits are supplied with voltage that needs to be steady (e.g.
3.3V all time) and be capable to provide however much current our
circuit needs (consumes), keeping always the supply voltage steady.
Even a big battery that has no problem to provide the circuit’s
current needs cannot maintain a steady voltage as it is discharged
over time and its voltage gradually falls.

Regulators provide a steady voltage output that can supply our
circuit and make us feel sure that this voltage will always be inside
±1% of the specified value if some specifications are respected.
Guarantying that a circuit is supplied with a well specified voltage is
crucial since most ICs need to be under specific voltage range and
since the behavior of the whole system should be the same regardless
e.g. the charging percentage of a battery. To start with the problem
(in engineering terms, “problem” is a good word) power supply sources
either have rather big changes of their voltage over longer times (a
battery charges – discharges, a photovoltaic cell is shined more or
less), uncertainty of the voltage (circuit designed to accept e.g. from
5V to 12V supply input) or ripple in the voltage, that is, changes
usually periodic of 0.02 sec to 0.1usec period.

All regulators produce a steady output voltage and provide output
current from 0 up to a maximum value (since current flow heats them
up), according to how much current our circuit needs or “draws”.

Each has at least one input, one output and a
ground (GND) pin (connects to circuit’s ground)
like the schematic symbol on the left. Note that
ICs schematic symbols are arbitrary, they only

need to show the pins of the IC they represent. In the pictures of ICs

p 34 1.7 Regulators – a first glimpse to ICs

in the previous chapter, we saw that ICs have pins, from 3 to more
than 100. They also have “packages” SMD or THT type. Pins are

usually named by numbers starting from 1. The
number given to each pin is described with pictures on
the real package of the chip, like on the left. We do not
want to connect wrong pins when we go from
schematic to “making”.

LINEAR REGULATORS

The simplest form of regulators are the “linear regulators”, most of
which - though not all - are called LDOs - Low Drop Out regulators.
Most are “fixed voltage output”, that is, if you buy a fixed output
regulator of 5V, changing the output voltage requires to change the
regulator to another with different fixed output voltage. The input
voltage in linear regulators has to be higher than the output voltage
(but in a specified min – max region). Any input voltage in that
region, will produce the same (fixed) and steady output voltage.
Linear regulators tend to heat up easily by the current they deliver.
Other kinds of regulators are the switching kind which use a coil.
They may produce higher output than input and heat up a lot less,
so be capable to deliver higher current output, but they are more
complex.

INTRODUCTION TO ICS &

COMPONENTS SPECIFICATIONS

In semiconductors industry there are many manufacturers, other
more, other less famous (all electronics made of Silicon are
semiconductors, just because they may be conductive like a wire, or
they may not be, according to conditions). There is no way to
convey practical electronics engineering knowledge without
referring to those. The author of this book is affiliated to none. You
will see a lot manufacturers firms and a lot of products mentioned
throughout this book but they are random, chosen according to
subjective views and are surely not the only ones to do a job or solve
a problem. Let us freely talk about any product from the hundreds

p 35 1.7 Regulators – a first glimpse to ICs

thousands out there without any taboos of advertising or “burying”
others. Same applies for any incorporation mentioned.

If we speak about any IC, we must refer to how to buy it and get in
your hands that same one. All have a manufacturer and a
manufacturer part number. The latest defines them fully and is
unique. To search about ICs the most recommended way is to use
the big distributors e-shops where you have in one place all major
manufacturers’ products that fall into specifications filters or
keywords you provide. Finding your best IC does not mean you will
buy it from there. Here are a few major such sites:

Name Web site Location Subjective
description

Digikey digikey.com USA
Best web site regarding
information, plethora and
navigation speed

Mouser mouser.com

USA –
Europe

dispatching

Almost same as Digikey
with a few less products.
Ships from Italy for
European customers

Farnell farnell.com UK
Ultimate low shipping cost,
ultimate delivery speed in
Europe, less products

LCSC lcsc.com China

Decent DHL shipping cost,
includes a plethora of
Chinese manufacturers and
products - yet has less
variety than the previous
distributors but amazingly
cheaper prices

Octopart octopart.com -

This is a multi-distributor
search engine. You enter a
part number and see in all
big distributors the price
and the stock

To choose an IC for a job first we see the important specifications
(specs) on those sites and if we like those, its price and its availability,
we download and read its datasheet.

A datasheet tells all the truth about the component. It leaves no
untold information to the most possible. They are 100% in technical

p 36 1.7 Regulators – a first glimpse to ICs

language requiring the reader to have basic background in general
electronics and in similar products. They may be from 2 pages to
2000 depending on the product. They are not for ICs only, every
electronics component, even a resistor has its manufacturing part
number and a datasheet.

We are in the real world. Almost nothing works ideally. Even
resistors have value tolerance, maximum power dissipation, side
effects like a little inductance and other specifications referring to
environmental conditions they can survive in. They also have
geometric dimensions, handling recommendations etc. We will try
in this book to make you understand the most practical specifications
of datasheets and the descriptions the make. The path to learn more
of applied electronics, after reaching a basic level, is to read
components datasheets.

BACK TO THE REGULATORS: LD1117V33C

Let’s take one out of the thousands of regulators, which is common,
cheap and broadly used. It’s the LD1117V33C part number from
ST Microelectronics. A practical way to get its’ datasheet is to search
for LD1117V33C in Digikey and be right on it. As a bonus we learn
the price that is about 0.5$ each and a summary of its specs. No need
to do it now, we will take a feeling of what is written in it and of
how we will use our regulator in the following paragraphs.

It is a common practice datasheets to be written for a series of
products as in our case for LD1117 series. That series includes
different package sizes and different voltage output part numbers.
Let’s see some datasheet’s highlights (material taken from June2019
document version)

p 37 1.7 Regulators – a first glimpse to ICs

The devices packages names are universally standardized in
geometry. Any component in TO-220 has the same shape and
dimensions. Do not try to follow yet the non-highlighted text. It is
of lower importance anyway. In the first 7 highlighted lines “drop
voltage” is how much higher the input voltage has to be from the
output voltage. In adjustable regulators we can set the output
voltage using two resistors. Let’s see what the next group of
highlighted lines tries to tell: In a next page (p.8) we see:

That is how almost all regulators are used. They require 2 capacitors
placed close to them for charge reservoirs, one at the input and one
at the output. Other specification highlights are:

Absolute maximum ratings inform us when and how we burn our
component, e.g. input voltage higher than 15V will burn it. We
should always look twice at all of them.

Near the end of the
document we find
the specifics of our
manufacturer part
number. It is 3.3V
fixed output in a
TO-220 package.
If we dig a little
more inside the
document, we find

p 38 1.7 Regulators – a first glimpse to ICs

that LD1117V33 works from 0oC - 125oC, while LD1117V33C
works from -40oC to125oC. This table also helps to select other part
numbers according to our needs.

Last, the detailed electrical operation characteristics:

At this point some of those will be out of comprehension.
Patience… A last note about the LD1117V33C: Since it is a well-
selling IC, many other manufacturers have made compatible ones
using manufacturer’s part numbers like xx1117xxxx.

p 39 1.8 One plus one makes 10: the binary system and the digital world

1.8 ONE PLUS ONE MAKES 10: THE BINARY

SYSTEM AND THE DIGITAL WORLD

Computers, data, nowadays media storage, communications, even
TV are termed as “digital”. In this chapter we will demystify what
“digital” is and how much simple and stupidly “tricky” it is. The word
comes from “digit” but that is only misleading. Let’s take a break of
all those components we dealt with and travel a little in some ideas,
in the world of digital logic.

ANALOG ELECTRICAL SIGNALS

What is electrical signal? Anything that carries information
electrically. In 99% of cases, information is corresponded to
voltage’s value (the other case is current’s value), such as sound,
data etc. Electromagnetic waves are not signals. Electrical signals
are also “control signals” such as a voltage applied on a MOSFET’s
gate that controls its “switching state” to ON or OFF. Even if that
changes very seldom, it is information also that sets a state of
something.

What is not an electrical signal: Voltages that are intended to be
steady forever, such as power supply voltages and others few. So in
electronics most voltages are signals.

A signal (voltage) can take any value and between two voltage’s
values which are very close, there are infinite values a voltage may
have in between (e.g. there are infinite values a voltage may take
between 0.95 and 0.0950001 Volts). If we care about how much a
voltage is and even a negligible difference makes a difference to us,
that’s an analog signal. Since nature works in a way that allows
practically infinite “resolution” of a voltage, all signals are really
analog, but they are characterized as analog if any difference in
voltage value makes a different result e.g. driving an LED with a
variable voltage that is intended to set it’s intensity. The more
voltage the brighter the LED. Same for sound that is just converted
to voltage using a microphone.

p 40 1.8 One plus one makes 10: the binary system and the digital world

All analog signals suffer from some problems:

 Accuracy: even if the voltage value has absolute accuracy of
0.000001% it has randomness (uncertainty) in how much
exactly it is. That is always the case for any accuracy
requirement, tight or loose.

 Distortion: When an analog signal is passed through
electronics or just through wires which are not intended to
alter it, it gets altered almost always (e.g. the higher the
frequency the more the attenuation)

 Noise: This is the biggest problem. Noise is random
fluctuations added to the signal. Nature adds noise almost
at all systems. Examples: a hissing noise on sound, specks
on picture of analog TVs, scratches on vinyl discs, etc.

THE BIG TRICK: TWO STATES ONLY!

Here is the great trick. We take a signal (analog signal) and we divide
the voltage value in two discrete areas, “high” and “low”, let’s say
below 2V and over 2V. Let’s now produce signals (voltage) that is
either 0V or 3.3V. Accuracy, distortion and noise cannot be so
terrible as to make our 0V voltage to over 2V or our 3.3V voltage
to less than 2V. (2V is not such an exact threshold, it is rounded for
our example). Taking into consideration only if the voltage is “high”
or “low” we skip all analog signals problems. We have a method that
does not loose information.

Apply this concept in media storage: An old cassette - tape has noisy
and distorted sound, if you copy a tape and from the copy you make
another copy, the sound will degrade a lot. A CD or an mp3 file on
the other hand has information comprised of “highs” or “lows”. Its
copies do not degrade.

Signals treated as carrying “high” or “low” states are called digital.

DIGITAL LOGIC

The idea of being either “high” or “low” has the magic any two things
have: If it not the one it is the other. That is what makes our
computers! There is a whole logic or algebra (simple enough for an

p 41 1.8 One plus one makes 10: the binary system and the digital world

8yo child) that can be made with two states, called Boolean logic
from Mr. George Bool, a mathematician in 1850’s.

Let’s give to “low” the number 0 and to “high” the number 1. From
now on we have 0’s and 1’s.

THE BINARY SYSTEM

Humans used their ten figures to
associate counting of physical objects. If
nature made us with 3 figures in each
hand we would count to 6. For seven
or more we would add one more
“digit”, so we should count like on the
left table. Technically they are called
“Base-10” and “Base-6” numbering
systems. The base-10 system we are
used to is also called decimal.

 How about having only 2 states?
(“Base-2”). That should allow only 0s
and 1s. That’s the binary system. Let’s
count in Binary (on the left).

There is a saying: “…there are 10 kinds
of people, those who understand binary
and those who don’t”.

Binary system uses the magic of “if it is
not 1 we know what it is, it is 0” and
vice versa. It also “glues” with
electronics such as switches states: ON
or OFF. As digital signals that they are,

we associate them with a voltage range, e.g. anything between 0 to
1.4V is “0”, anything between 1.8V to 3.3V is “1” (not guaranteed
to 0 or 1 if in-between) or analogously with 5V (3.3V or 5V is the
supply voltage of our circuits). Each digit carrying a binary value is
called bit. A group of 8 bits representing together a number (8 bits
count up to 255 or have 256 combinations including zero) is called
a byte (a number of n bits makes 2n combinations like a decimal
number of n digits makes 10n combinations).

10 states 6 states
0 0

1 1

2 2

3 3

4 4

5 5

6 10

7 11

8 12

9 13

10 14

11 15

12 100

13 101

Decimal Binary
0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

p 42 1.8 One plus one makes 10: the binary system and the digital world

Using binary numbers, or using decimal, or any other number base
has no difference in performing the usual mathematic operations like
addition, subtraction, multiplication, division etc. in binary 11+10
makes 101 just us 3+2 = 5. It is just another representation for the
same quantity. But since bits can be literally the states of MOSFETs,
real circuitry can now handle numbers (binary) and if complex
enough, do such operations. Moreover its calculations can be ideally
accurate if no 0 becomes accidentally 1 or vice versa (digital
electronics are reliable enough to offer this), something that would
be impossible if analog signals were handled.

We will not talk about logical gates yet as all classical books do. In
nowadays circuits, you will find one gate every 20 circuits or
more… technology goes on with microcontrollers. But we will see
them in chapter 2.10 for theoretical knowledge with applications in
software.

p 43 1.9 Microcontroller anatomy: Exploration of the magic castle

1.9 MICROCONTROLLER ANATOMY:

EXPLORATION OF THE MAGIC CASTLE

It’s time to meet
them! MCUs, (Micro
Controller Units) the
heart and the brain of
most modern circuits.
They contain a
computer and lots of
peripherals inside a
single chip. They
come in great variety
of features. On the
left we see only the
basic of those.

The most complex components we encountered so far are the linear
regulators, comprising of 10 to 50 transistors. Microcontrollers
(MCUs) comprise of more than half a million. Their exploration will
take two chapters for the most common features only.

A good thing is that 98% of their specifications and functionality
description involves digital logic only (unlike many electronics-
nature specs we found on other components). There is a common
set of knowledge around “standard” functionalities they provide, in
order to know how to select, understand and use the peripherals
each one includes.

We live in a magic age where such ICs cost from 0.5$ to 10$ for
buying in retail a single one. From year to year new MCUs enter the
market with more features and computing power for less price. It is
good not to stick in one part number for many years.

Let’s imagine a microcontroller is a castle with many rooms and let’s
start exploring!

p 44 1.9 Microcontroller anatomy: Exploration of the magic castle

THE CORE & MEMORY

At the heart we find the
computer. A CPU
(Central Processing
Unit) or “core” where
the commands of our
program are executed,
memory of permanent
storage type and volatile
type. Permanent

storage type memory (whatever written remains forever even when
power turns off) is usually “Flash” type memory. Volatile type is a
feature that we do not want (forgets its contents when power turns
off) but unfortunately that is how RAM is (Random Access
Memory), but we can change infinite times its contents very fast. In
RAM we store changing data, in Flash we store the program and any
permanent data contents.

How powerful is that computer? Well in absolute terms, for the jobs
used, it is very powerful. They usually execute more than 10 million
commands per second. Compared to our PCs, MACs or
smartphones their performance is a joke, it is about 1/1000, but
their cost (average 3$), size (average 5cm x 5cm) and the current
they consume (around 20mA) makes them a treasure. Their
memory sizes are from 8Kbytes to 500Kbytes in Flash memory
(compare this to Terabytes of hard disks space) and from 256 bytes
to 200Kbytes in RAM memory (compared to 2-8GBytes of year
2020 PCs and smartphones), but again their applications do not
include playing YouTube in 4K resolution. They can store programs
of many thousand lines of code and perform very complex tasks.
Moreover they interact with the physical world by measuring
voltages, generating signals, controlling physical objects like
motors, lights etc. that PCs, MACs and smartphones cannot do, plus
they fit inside a circuit.

The CPU and the memories had been the center of our castle. There
are many rooms around, each is a peripheral functioning its own,
doing very specific functions (if we use it). Each is connected

p 45 1.9 Microcontroller anatomy: Exploration of the magic castle

directly to the core, sharing data or receiving commands from it
(our program’s commands)

GPIOS

The most useful and easy to understand peripheral is an internal
controller that can use almost any of the chip’s pins as inputs or
outputs of digital signals. The pins functioning that way are called
General Purpose Input/Outputs. Let’s see this feature that is the
most useful.

Let’s consider a small MCU like the
one on the left. It is from ST
Microelectronics. ST named any
GPIO pin as PXX (P from “port”).
We can set any of those in the mode
we want (input or output) initially.
We can read the real time value of
each input pin, which will be 1 if

the voltage on it is more than the half of the supply voltage or 0 if it
is less. The MCU supply voltage is usually around 3V (3.3V most
times) but some older MCUs like we will see in the Arduino later,
are supplied with 5V. If a pin is initially set as output (there are
some output modes but we will skip them in this chapter) it will
have a voltage on it that is 0V if it is set to zero or equal to the supply
voltage if we set it to 1. Connecting an LED with its series resistor
to an output GPIO is a first thought that works well. Each output
can provide up to about 20mA to whatever is connected to it (driven
by it). If our load is more current hungry we can use MOSFETs or
other means to drive it.

ADCS

ADCs are a bridge between two worlds, the analog and the digital.
The name means Analog to Digital Converter. Some pins can be
configured to be ADC inputs instead of their default function to
be GPIOs. Those pins can measure voltages (regarded as analog
signals). Measuring means to convert a physical voltage into a
number that our program can use. Their main specs are the
resolution (usually 4096 steps), the voltage range (usually 0V to

p 46 1.9 Microcontroller anatomy: Exploration of the magic castle

supply voltage) and the speed of measuring (converting to digital).
For the latest they can perform around a million measurements per
second. That way our computer can measure in real time physical
quantities like sensors’ output signals that correspond to
temperature, pressure etc. Having a program of our own reading
the states of GPIO input pins and ADC input pins in less than 1
microsecond and controlling GPIO outputs accordingly gives a lot
of capabilities to create and maybe invent. Seat back and start
imagining applications or examples you could make.

PWM

A pin can be configured in PWM mode that is Pulse Width
Modulation, instead of its default GPIO mode. We will explain
more what this is in chapter 2.8. It is an output mode that switches
on and off fast in a way as to keep an average voltage on it anywhere
from 0V to the supply voltage. That way we can adjust how much
an LED will shine, how fast a motor will spin etc. The maximum
current a PWM output pin can provide, again is a limit to what we
can connect on our MCU GPIO pins directly.

UART

With the creepy name “Universal Asynchronous Receiver–
Transmitter”, UART or USART (S for “synchronous”) is the de
facto, easiest and most traditional way for MCUs to exchange data
or communicate. Forget Gigabit networks or nowadays internet
connection speeds. For simple communication where
0.1Mbit/second (equal to about 0.01MegaBytes/second) is enough
speed, UART provides great two way communication using only
two wires. Information (bytes) is transmitted through the
transmitting wire (TX), bit by bit (8 bits in series, the one after the
other) and can be received in the same manner on the receiving (RX)
wire. Its history goes back to the 1960’s and it is still the simplest
way to communicate using a serial way of exchanging data.
Unfortunately its old nature requires to set the speed for both the
connected parties at the same rate to make it work. Devices to
provide a USB to UART function for the PC are very common and

p 47 1.9 Microcontroller anatomy: Exploration of the magic castle

cheap (USB to UART dongles), so
usually our PC communicates with
our MCU over a UART. We can use
it for the MCU to send any data, like

measurement values, text messages and whatever else to our PC and
view them on a console terminal, or for the PC to program our
MCU or send to it data commanding it to do something. MCUs may
also “talk” to each other that way. Note that throughout the rest of
the book “PC” will be named any host computer, either PC, or
MAC, smartphone or tablet.

Let’s see quickly the rest of the serial communication methods. The
main concept is that we spare 8 pins to transmit the 8 bits of a byte
by serializing its (8) bits using as few pins as possible.

I2C

Another serial interface, a lot more sophisticated, thus complex, but
with many useful features. It means Inter - Integrated Circuits
communication, pronounced “I squared C” or “I 2 C” invented in
1982 by Philips Semiconductor (now NXP Semiconductors). It uses
two wires. Its main feature is that it can connect many I2C
peripherals simultaneously with an MCU. The MCU has the
credentials of the “master”, connected peripherals are “slaves”.
Each slave has its own unique address. The master asks for
communication with a specified address slave, so it can select who
it is talking to. Complex protocol but easy to use with supporting
software. Its speed is up to 0.4Mbits/sec. Many sensors are
providing I2C interface for communication with the MCU.

SPI

Another “Serial Peripheral Interface” that is simple, fast (up to over
20Mbits/sec) and needs 4 wires.

TIMERS

They count time, but they count really fast (they tick in frequency
up to 10s Mega Hertz (MHz) (times per second), provide fast and
accurate timing to our software or to pins that produce timing

p 48 1.9 Microcontroller anatomy: Exploration of the magic castle

accurate signals or measure fast counting signals. PWM is produced
by timers also. A special timing sub-system is called RTC from Real
Time Clock. It takes the mission to count time when everything else
of the MCU may be turned off, using extremely low energy from a
coin cell battery.

USB

Some modern MCUs (not of the cheapest range) provide USB
connection. That way our circuit can be plunged to a PC, operate as
a USB device and usually be supplied from it.

DEBUGGING INTERFACE

Most MCUs provide special pins (most times only 2 pins), and
special “USB debugger” devices which connect to our computer that
connect to those pins. Imagine writing an MCU program using your
computer. MCU is not that computer, so you have to transfer the
program to the MCU whenever you are about to test it. Testing
involves finding and curing any problems called in software
terminology “bugs” (from a real story of a cockroach in the first
electronic computer ever made). Those magic debuggers provide
“in-line” or “in-circuit” debugging that is your computer (PC) can
command the MCU to stop execution and read any internal live data
which you see on your PC as if you are programming and testing a
program running in your own PC. A simper way is to use a UART
allowing only to transfer your program to the MCU, not providing
the “in circuit” debugging functionality.

p 49 1.10 Arduinos and the Arduino UNO board

1.10 ARDUINOS AND THE ARDUINO UNO

BOARD

Let’s leave for a sort while away from the technical stuff to relax and
inspire with a few stories…

THE “TRIBE” OF SOFTWARE DEVELOPERS

Some people have been writing computer programs for a significant
part of their lives. Let’s talk about them, the software developers,
or programmers or coders.

Software developing (or programming or coding) is a hobby of very
high complexity. Envision a system of 200 kinds of commands (we
include function calls here), two thirds already existing - which we
need to know all about, one third of those kinds created by us
(functions mainly) many data and 10,000 commands made by those
200 kinds. That’s a medium sized program a skillful programmer
can make alone, in a one to six months period. Do not freak out. In
most practical electronic projects with an MCU, those numbers (for
a medium size project) are around: 50 kinds, 500 commands.
Moreover most projects are small.

It seems like all programmers, especially the self-taught ones, keep
their minds in a good shape. Mind training and IQ raising by working
effort is one thing. The other big thing is the nature of this “work”.
To people who love it (most programmers) it is playful, pleasant,
making happiness exploding many times a day, inventive and a 100%
creative. People who spend the most part of their lives in that mode
(laughed by other people as “nerdy”), especially since their young
age, they sometimes obtain some special virtues.

A percentage, perhaps higher than 5%, makes a personality that is
altruistic. They have an idealistic view of the world, they want to
help others and they want their life to leave a great footprint on this
planet. It seems like the constant creativity (that is work, not birth
talent) and all the mind pleasures of the process of coding spawns
that. That process also never has tricky, nasty, sneaky, hostile people
to deal with, but only logic and objectivity in every “cause and
effect”. Let us see some of those software developers: Elon Musk

p 50 1.10 Arduinos and the Arduino UNO board

(“the goal is to make life multi-planetary”), the founders of
Wikipedia (open knowledge), the founders of Twitter (open
speech, open news), Richard Stallman (Free software movement),
Julian Assange (corruption fighting), Linus Torvalds (Linux) among
many others, just for making a picture to what we are talking about.
Such people are on any field, but among software developers they
are very common, mostly at making goals different than net profit.
How many business do you know to have grown in the last century
and back, which did not have the profit as their only goal? How many
people have you heard of who prefer a good cause over a million
dollars?

OPEN SOURCE SOFTWARE

This great “breed” of programmers tends to help fellow
programmers or non-programmers who do not have access to
expensive software tools which are useful to their (programming)
lives. They share their creations (in their free time, it cannot be on
paid time) with all the world. That software is the open source
software, where the software author entitles everybody to do
anything they want to with that software, as if it was theirs, in other
words it is free. Most importantly they provide full access (there is
nothing “locked”) in order for others to continue its development or
do whatever change they need and as much explanation of how it
works (documentation) as they can. A notorious such software is the
Linux operating system kernel that is over 25 million lines of code,
all free to everyone.

THE ARDUINO IS ABOUT “OPEN SOURCE”

We have not said yet what is “Arduino”. Some guys in Italy, around
2004, set in their minds to make open software that will tackle the
following problem:

In the old times of “home computers” in the 80’s, everyone
programmed. That’s because starting programming was easy and
had almost no need to learn about other software code to “glue” their
creation with it, in order to make anything working. As computers
evolve, software tools inevitably have been turning more and more
complex since functionality hugely increases, in the last 20 years

p 51 1.10 Arduinos and the Arduino UNO board

they are over 100 times more complex than the “BASIC” language
of those early home computers.

Those people (in the course of a University graduate program) set
themselves to create a programming platform (programming tools
such as programming language) what will be very simple, simple
enough for non-programmers to be learned and used very quickly
for creating simple software projects. The most important part was
the “open source” philosophy since the beginning. They first made
the project “Processing” that uses “C++” language with a very
simplified extension in order to make simple and playful computer
graphics. They took “Processing” afterwards and “ported” it into an
MCU, making another very simplified extension to allow the

control of the MCUs
peripherals and CPU
functionality. They called it
“Wiring”. That was
accompanied with a really
simple application (actually too
simple) used by the users to
write the MCU software (like
the “notepad” we use in
Microsoft Windows to write
text), called IDE (Integrated
Development Environment).
All open source of course. A
project spawned from the
Wiring project, called Arduino
named by the name of a bar

where some team members used to hang out. Thousands of
developers liked the idea and the cheap hardware it used. They
started using it and made their contributions on that open software,
making it nowadays a very big open “library” of ready to use pieces
of code for hundredths of functionalities of the MCU and of other
electronics connected to it (e.g. screen displays, sensors, etc.).
That’s more or less the Arduino project. Its 95% about open source
software, oriented for “programming the easy way”. The other 5%
is hardware, open “source” also (free to use designs or “open
hardware”). The core idea of it is that someone who is not a

p 52 1.10 Arduinos and the Arduino UNO board

programmer or a professional programmer can start-up coding and
do useful things very easily.

ARDUINO BOARDS

Arduino compatible boards are electronic circuit boards with an
MCU that is supported by the Arduino open source software.
Historically they got into the market by the Arduino team who are
still selling the original ones. Now they are sold from over 100
different manufacturers all over the world since anyone is free to
make them and the design is available. There are many different
models out there. The most standard one, since it was the oldest
one, is the “Arduino UNO” model. Here it is:

An Arduino board offers an easier way to use an MCU rather than
having the MCU chip alone, namely:

 It is easier to connect components on the MCU pins through
the expansion sockets called female headers (they contain
spring conducts and are like the breadboard pin holes)

 Includes power supply circuitry consisted of regulators

 Includes about 8 more passive components required such as
capacitors and a clock source of precise frequency (a crystal)

 Includes communications interface over USB (a UART to
USB) to connect to a PC for downloading to the MCU our
software and for exchanging data over a serial port.

p 53 1.10 Arduinos and the Arduino UNO board

 The Arduino Uno expansion pin headers position has been
standardized, allowing others to make and sell expansion
boards that fit on it, connecting with a single “snap”. They

are called “shields” and
provide many kinds of
functionality, like the
“Ethernet shield” on the left.

Besides Arduino UNO, there are many other boards, most with
different MCUs which support the Arduino coding platform. The
choice about which one to build with is about cost and capabilities.
If for example our project needs more pins to drive or measure

many resources (e.g.
many sensors), a next
choice might be Arduino
MEGA 2560 seen on the
left that is pin compatible
to the UNO. If our

project is small and any dollar put to it is
under some consideration or if the space is
tight, we might go with a “nano” form
factor as seen on the left. Besides the form

factor, there is an MCU variety to choose from. The MCU choice
has to do with performance characteristics, Arduino software
compatibility (some may not be 100% but be 99% compatible to the
Arduino software) and cost. Such decisions shall be taken after you
finish reading this book. For now, let’s introduce you to the web

site and have a quick look around if you like. To
those guys we owe a lot, so donating them the money for a beer
sometime or purchasing anything from them may be a great reward
they surely deserve.

ARDUINO UNO PERFORMANCE

Arduino UNO is unfortunately an old design, but still inside around
the 50% of nowadays Arduino projects. Dated around 2005, its
MCU is not so powerful both in functionality of peripherals and in
“computer” performance regarding execution speed and memory.
Same applies for Arduino nano that has the same MCU. It is the part

p 54 1.10 Arduinos and the Arduino UNO board

number ATmega328P from the former Atmel company, now
Microchip Technology Inc. The board (UNO) costs around 5$
though (from Chinese retailers or ebay.com), so it’s not any great
investment to make. Its worth because it is the most “compatible”
or “standard” regarding expansion hardware (shields) and software.
Currently it is under version (release) number 3, or R3 (previous
releases are to the 98% the same). Let’s take an idea of how much
powerful it is.

 CPU: It has 8 bits bus (PCs are now 64 bits) with a clock
running at 16MHz (compared to 3GHz of PCs), single core
of course, able to execute about 16 million commands per
second. For automation and measuring things it is much
more than enough. For running a browser or playing
multimedia it is out of any discussion. Since it is a computer
that runs only the program we have written (there is not
even an operating system in it), surprisingly the “lagging”
in execution is a thousand times less than in a PC. There is
no case of interruption between two commands execution
for doing an antivirus scanning for example. It’s a “hard
real-time” system, where we have full control.

 Memory: 32Kbytes for program or permanent data
memory (Flash), 1Kbytes of a faster permanent memory
for data (EEPROM) and 2Kbytes of data memory (RAM).
Here is mainly the problem of the “old horse”
ATMEGA328 MCU it carries. It can store about 2000 lines
of code or more that may be a reach program, but the data
memory (RAM) is really small. It can barely hold the text
(no photos, no formatting) of this page of the book you are
now reading.

 Peripherals included as quoted in the datasheet of the MCU
(ATmega328P): (you don’t need to understand all of them
at this moment)

o Two 8-bit Timer/Counters with Separate Prescaler and
Compare Mode

o One 16-bit Timer/Counter with Separate Prescaler, Compare
Mode, and Capture Mode

o Real Time Counter with Separate Oscillator
o Six PWM Channels

p 55 1.10 Arduinos and the Arduino UNO board

o 8-channel 10-bit ADC in TQFP and QFN/MLF package -
Temperature Measurement

o 6-channel 10-bit ADC in PDIP Package - Temperature
Measurement

o Programmable Serial USART
o Master/Slave SPI Serial Interface
o Byte-oriented 2-wire Serial Interface (Philips I2C compatible)
o Programmable Watchdog Timer with separate On-chip

Oscillator
o On-chip Analog Comparator
o Interrupt and Wake-up on Pin Change

In our days those are mediocratic features but they enable to build a
lot of stuff. The flight computer on the space shuttle was not grater.
Nor the computers they had onboard the great Apollo spacecrafts
when they flew towards the moon. In chapter 2.9 we will see other
Arduino compatible boards with MCUs that are a great deal more
powerful. The “de facto” Arduino UNO’s simplicity is a good start.

Another ghost of the past that it carries – which is a pain in design –
is the voltage supply level. The Arduino team chose to use 5V, as
that was the standard of the digital electronics of that time, now the
standard is 3.3V, so we find problems when connecting some 3.3V
hardware with maximum allowable voltage of 3.7V, to 5V signals.

CONNECTING COMPONENTS TO ARDUINOS

Finally, to grab even more the idea of how useful an Arduino board
can be, let’s see how we can practically
connect an LED to it and control it by
software (on the left). The photo is
accredited to the greatest site for
Arduinos, after the the

website that has flooded
the Arduino open source library with its
own contributions. (Credit: Simon Monk,

). That job
was done using the easiest and most popular method to connect
anything to an Arduino board. DuPont cables! They are cables
that come with a socket on each of their sides either female (hole)
or male (pin).

p 56 1.10 Arduinos and the Arduino UNO board

Those plugs directly (female to male) to an Arduino expansion
socket (called header) or to a breadboard or to other boards with
headers like sensors etc. we will see next. So there are four kinds of
DuPont cables, male to male, male to female, female to male and
female to female. They also come in various lengths. Surely your
drawer of expendable stuff should always have some.

Regarding breadboards, Arduino
“nano” boards are very breadboard
friendly (left).

Besides all those “quick and dirty”
methods just mentioned, in
chapter 2.4 we will see how to

make professional grade devices with Arduinos or make Arduinos
ourselves.

p 57 1.11 Sensors and things that move stuff and display stuff

1.11 SENSORS AND THINGS THAT MOVE STUFF

AND DISPLAY STUFF

A brain (MCU) is useless if there are no eyes, ears and other “inputs”
or “measuring instruments” as well as “actuators” like feet, hands
etc. In this chapter we will have a glimpse of such input and output
stuff as to start getting an idea of what useful creations we can make
with electronics. The research and learning the technical details of
each one are to be done from you, when you are about to use a
specific one on a project. We are about to see a big world of
capabilities all of which we can easily give to our circuits.

Let’s start with the most playful, things that do actions, like motors,
lights, displays, speakers etc. This chapter will be quite a big list of
lots of toys. Take a break between them if you get dizzy here.

A RANDOM LIST OF SYSTEMS WE CAN CONTROL:

Motors:

The simplest motors we may know of, are the DC
motors or brushed motors. Applying voltage on
their poles (within the specified limits) the motor

turns clockwise or anticlockwise according to the polarity of the
voltage. They usually spin at about 2000 to 20000 RPMs (rotations
per minute) which is usually too fast, so they are also sold with a

gearbox (a set of gears reducing the speed and
increasing the torque or “rotating force”)
providing a more usable rotation speed, usually
around 100 RPMs. Their mechanical power and

thus the current they consume varies. Most usual ones, around 7cm
long, with a gearbox, used for toys mainly, cost from around 1$.

They consume around 3A maximum (when
powered up and kept stopped). How can we drive
them (control them) with an MCU? We need a
circuit that is also ready as an IC, called H-
bridge. A good thing is that we can buy ready
boards with such chips and all components

included for costs starting at less than 1$. Their specs are the

p 58 1.11 Sensors and things that move stuff and display stuff

maximum current output and the maximum voltage input. Here is
how they work: They “channel” the current of a powerful enough
power supply or battery, to the motor’s poles according to GPIO
control signals of an MCU. Four switches are in the form of letter

“H”, in our example turning ON “1” and “4” will spin the motor to
one direction , turning ON “2” and “3” will spin the motor to the
other, non or “1” and “3” or “2” and “4” ON will stop it.

When we need motion, we usually need to move something to a
new position rather just spinning it. Servo motors are the usual

solution to this. They are mainly used in Remote
Controlled (RC) models but later they have
shifted their application to the robotics. Most of
those can position their axis to a 180 degrees
ranging angle that is set to the servo motor by
three signals. + and – voltage supply (usually
around 5V), capable to deliver at least 1A current

and a control signal that uses timing to define the position (0o to 180o
usually). That signal is created from a GPIO pin of an MCU. No
extra circuitry is required since the servo motor contains the
controlling circuitry. They stay on the position set, if the position
changes they move to the new one in less than a second usually.
Their specs are the force they can apply, their size and the
mechanical quality (e.g. metallic or plastic gears). The cost for small
ones starts from around 1$.

p 59 1.11 Sensors and things that move stuff and display stuff

A last kind of motors used for positioning
are the stepper motors. They offer very
precise positioning and free spinning under
controlled speed (they are not bound to
180o) only. They are called stepper because
they are commanded to make one step at a

time, clockwise or anticlockwise. The step size is around 2o. Making
for example 1000 steps at one direction, if the step is 1.8o they will
rotate by 5 circles precisely (1000*1.8/360). If they make again
1000 steps to the other direction they will return exactly to their
initial position. That accuracy of motion makes them the motors of
choice to move the printing head and the paper in desktop printers,
3D printers and to move accurately almost all industrial robotic

systems with ultimate precision. They need a
“stepper motor driver” to be driven and sequences
of a few MCU GPIOs to create the necessary
control signals. Those driving boards are mainly
specified by the maximum current and voltage they
can provide. H-bridges also can do that job. The

stepper motors are specified mostly by the holding force (torque)
and the number of steps per cycle they provide. Their cost depends
on their size, ranging from 0.5$ to 100’s $.

Relays:

Imagine mechanical switches that do not change position by hand
but rather change their position mechanically by
an electric signal. Such devices (relays) can be used
to control by “logic” of software in an MCU any
electrical circuit connected to that switch. Switched
circuits may be of any range of voltage or current
according to the switch’s specs. We can turn ON

or OFF devices plugged in the electric grid (220V AC or 110V AC),
small ones and big ones (e.g. from a lighting bulb to electric ovens,
heaters and pumps), also turn on/off devices working on low DC
voltage consuming a lot of current like motors, heaters and any
current hungry or high voltage device we may think off.

p 60 1.11 Sensors and things that move stuff and display stuff

Relays invention is over 100 years old. They are mechanical switches
with a lever that is not moved by hand, but it is internal and moved

by attraction to an
electromagnet (coil)
whenever current flows
through it. The switch
conducts are electrically

isolated from the coil’s poles. Relays come
with most kinds of two position switches
(SPST, SPDT, 3P2T, 4P2T…). Their
main specifications is the switch’s
conducts maximum current (usual is
around 2A-10A) and the coil’s voltage
needed to activate (3V to 220V). They are
mounted on circuit boards (PCBs) or on
sockets (base) providing terminals to
easily screw cables on them.

In order to activate their coil, the voltage applied to it (the coil) must
be near a specified value, from 3V to 220V. Most usual coils are 5V
and 12V. The current that has to be provided to it is usually around
100mA to 300mA. In order to provide such current, an MCU GPIO

pin needs the help of a MOSFET
or a BJT transistor. It also needs a
diode in a tricky connection to
protect our active component. It is
handy and money saving to use
relays with all this circuitry
included, ready to accept GPIO
signals costing around 0.5$ per
relay, each providing an SPDT
switch holding 10Amps. Another
variant of relays are the solid state
relays or SSRs which are fully

electronic, handling only electrical grid AC Voltage. It is needless
to say to take care to avoid electric shocks when connecting any
wires connected to the electrical grid to a relay’s conducts.

p 61 1.11 Sensors and things that move stuff and display stuff

Displays:

The oldest and simplest type is the 7-segment display. It is a digit
comprised of 7 segments each of which is an LED (usually there is

an 8th segment that is the dot). In many cases if a GPIO
pin is connected to each segment, it can provide
enough current to illuminate it adequately, with a
resistor in series of course. The 8 LEDs have internally
connected all their Anodes together (common Anode)

to a pin or their Cathodes (common Cathode). They come in various
sizes and colors.

An evolution of the 7-segment is the LED matrix. It is an array of
LEDs (usually 8x8) configured in a kind of an
array (16 pins drive 8x8 LEDs). They come
in different number of LEDs, colors and size.
We can place such components next to each
other to make seamlessly a bigger matrix.

Special controller chips in most cases are used in order to occupy
less GPIOs from our MCU and to provide adequate total current to
all those LEDs.

In chapter 1.3 we mentioned the RGB LEDs. RGB LEDs are a Red,
a Green and a Blue LED encased together. Their Anodes are
connected together to a pin in a “common Anode” LED, or their
Cathodes in a “common Cathode”. An evolution of those are the

“Neopixel” LEDs. They are RGB LEDs
encased together with a controlling IC with
part number WS2812 or WS28xx. That
IC accepts pulses of a single wire to set each
of the 3 LEDs (R-G-B) to the required
luminosity. If more pulses are provided,

each such IC starts outputting the rest of the pulses to others
connected like a chain “after” it, making it possible to control the
exact luminosity and color of many such LEDs with a single wire
(GPIO). They cost from 0.1$ to 0.5$ per LED. You may even find
long LED strips or arrays containing up to 100 LEDs or more.

p 62 1.11 Sensors and things that move stuff and display stuff

Getting away from the LEDs, proceeding to more advanced
displays, we go to screens. The simplest are small monochrome
display modules sized from 0.8” to about 5”. They are called

modules when they contain a
driving circuit and the display. They
are divided in character and graphic
modules. The first accept text
information and display it with a
fixed font only (left), the later
control individually each of their

pixels. Since most MCUs are low in memory and CPU power they
are best fitted with a low pixel count display. The smaller are also
the cheaper. The most widespread are the LCD (Liquid Crystal
Display) and the OLED (Organic LED) technologies. The first use
an LED backlight and work as “light valves” adjusting their opacity

or how much of the back-light passes
through. The later are self-lit LEDs,
each pixel emits its own light. A
commonly used LCD graphics module
is a screen from an old Nokia phone,
the 5110, shown on the left, taken from
a video of the great YouTube channel

“educ8s”. It costs around 2$. Their size is usually from 1” to 4”.

OLEDs on the other hand have vivid color
(white, blue or green) giving a more
impressive image. They are usually small, an
average size is around 0.8” only costing
around 2$. They range from 0.6” to 2”. One
less known issue they have is the life time of

each of their pixels. If a pixel shines at its full intensity, after about
one year of continuous operation it will reduce its brightness to
about one half (counting lit time only).

p 63 1.11 Sensors and things that move stuff and display stuff

Moving upper into the technology we meet full color TFT LCD
screen modules. As LCDs, they use a backlight and act as “light
valves” whereas now each pixel is comprised of three “sub-pixels”, a
red, a green and a blue. Each controls its intensity level to more than
100 steps rather than turning only ON or OFF. They range from
about 1” to 7”, usual sizes used are around 2” costing around 4$ (the

2” size). In sizes over 2” they are
optionally sold with a touch panel that
informs the MCU where we pressed it
(pressure sensitive, not touch
sensitive). (Picture on the left is taken from

.Connecting such a
screen to an Arduino will not enable

you to do what a smartphone does. A single image requires usually
more memory than an MCU has, so their applications are limited.
The software needed for such functionality is big and complicated.
Either they are limited to display simple images, or strong MCUs
are used, or a TFT LCD with included “strong” MCU is used that
provides ready functionalities to a “weaker” MCU. One of the latest
kinds are the “Nextion” displays from Itead Intelligent Systems.
Lately we see in the market high quality IPS TFTs which have a lot
more vivid colors and 10 times greater viewing angle.

Sound:

Sound can be produced from simple “beeps” to playing mp3 tracks
on a good quality loudspeaker. The simplest are the active

buzzers. They produce a tone of only one
frequency (or note) whenever they are
supplied with the voltage required. They
consume current according to the sound level

they produce, usually a GPIO needs the help of a
MOSFET to provide the current required. If we
need more than one and only tone, passive
buzzers or loudspeakers produce any
frequency but to be driven they require that

frequency of sound to be fed to them as the same frequency of
variating voltage. A MOSFET will do the driving job for simple

p 64 1.11 Sensors and things that move stuff and display stuff

tones sounds, an audio amplifier will be needed to generate any
sound like music or voice. According to the sound level we require,
the size and the price of a buzzer or speaker varies. A usual cost for
hearing something within a silent room is less than a dollar. Finally,
since MCUs are not fit in memory size and speed to playback sound,

some boards that can play small tracks of sound
stored in mp3 format are handy. They can
handle around 10 tracks which are selected for
playback using GPIOs. They cost around 0.5$!

and require a small capacity SD card. Using them with an amplifier
(if they do not contain it) and a speaker we can make applications
like the repeated recorded sounds we hear in an elevator. A note is
that any speaker has to be rated in more Watts than the amplifier
used in order to be sure it will not be burned.

A RANDOM LIST OF SENSORS:

Previously we took a glimpse of things we can command to light up,
move or “actuate”. We can call them outputs. Those together with
a “brain” are missing what can read/measure/sense information.
Let’s talk about those inputs that look like they are endless, like
there is one for whatever we need to measure. Let’s take a very sort
glimpse of the most useful and easy to use. The device that converts
a physical quantity (like temperature, light, magnetic field intensity
etc.) into a signal is called sensor. There can be electronic devices
or ICs with a sensor and a circuitry that makes the sensor signal
easier to read (e.g. amplifying it, transforming it to a digital
numerical value etc.) which we will still call sensors for making our
life easier.

A primer about measurements first: Since we will be talking about
measuring, precision comes to the surface. In measuring, besides
“counting” (e.g. how many people passed) all other measurements
suffer from tolerance or errors. In engineering, if we measure a
voltage of 1V and our instrument reads 1.0001V the measuring
error is equal to +0.0001V. Mistake is the human error, if e.g. we
measure another voltage instead. So error in engineering is not
something embarrassing but it is a performance spec. Another tricky
concept is that of accuracy vs precision. Accuracy is how close

p 65 1.11 Sensors and things that move stuff and display stuff

the absolute truth is approached, never reached, checked using very
expensive instruments and procedures. Our instrument can be
precise and not accurate if it is not calibrated well. For example
an expensive thermometer may read a temperature that is 20oC as
20.102 oC to 20.108 oC over hundredths of measurements over long
time periods. It will be precise to about ±0.003 oC but not accurate
to 0.1C. Resolution of an instrument (e.g. reading 20.10302oC
has resolution of 0.00001 oC) much higher than its precision is
misleading and is common practice in cheap measuring products.

Temperature and environment conditions:

Let’s begin with temperature, as it is all
around us and very usually needed to be
measured. There is a big diversity of
temperature sensors, we will pick only
some of those. The cheapest are
thermistors. They change their resistance a
lot according to temperature. Using an
analog input (ADC), one more resistor
(more details on chapter 2.2) and around

3 lines of code we can read the temperature with
accuracy of around 1oC (1.8oF) to 0.2oC (3.6oF)
depending on the thermistor and resistor quality.
Resolution / precision is good (may reach up to

0.01oC/0.018oF easily). The measuring range is around -40oC (-
40oF) to +100oC (+212oF). If we need to measure high
temperature, thermocouples are the choice (left) together with an

amplifying board, measuring up to +1100oC (2000oF)
with accuracy of around 1oC -3oC (1.8oF-5.4oF).
Going more “high-tech” for measuring usual
temperature of the environment, digital sensors
(containing an IC with embedded sensors) provide
ready measurement in numbers of oC or oF over a
serial interface (I2C usually). Some include other

sensors too, like humidity and atmospheric pressure. Two great
examples of those are the DHT11 and DHT22 (left) measuring
temperature and humidity, costing 1-2$ and providing accuracy

p 66 1.11 Sensors and things that move stuff and display stuff

around 0.5oC (0.6oF) and the BMP280 (left) from
Bosch. BMP280 measures temperature with 0.5oC
(0.6oF) accuracy and atmospheric (barometric)
pressure with stunning resolution (precision) of
around 0.0001% or one part per million (1ppm)
making it an altimeter of resolution that is better

than 1 meter in altitude measurement. Small boards with it that
connect easily to an MCU cost around 1-2$.

Light:

Measuring the environment light level has a few applications. As we
will see later, measuring the invisible Infrared light (IR) has a lot
more.

The simplest and less expensive way (around 2c each) is
the photoresistor (LDR), shown on the left. It varies its
resistance according to how much light shines on its

surface and – as the thermistor – we can use one more resistor and
an ADC input to measure this. Its resistance is around 1Mohm in
pitch dark and varies a lot in low light illumination: it drops to about
50K in dark indoors lighting conditions, goes to 1K in normal
indoors conditions, to around 100Ohms in cloudy outdoors and to
some Ohms in direct sunlight. Its precision is bad but it is handy to
distinguish night from day for example or direct sunlight from
shadow. If we need to measure the light (ambient light usually) more
precisely there are photodiodes, phototransistors (we will not come
to analysis about them) and IC light sensors which are the most

accurate ones. The most advanced provide
accurate light and color measurement for
applications to adjust smart lights illumination
level and color (light temperature) according to
the environment’s light conditions, photography
and others. Cost is less than 5$.

p 67 1.11 Sensors and things that move stuff and display stuff

Distance of an object:

On the left you see the most recognizable
sensor of DIY projects and educational robots.
It is a distance sensor that uses ultrasound to
measure distances from 3cm to around 3

meters with 1cm accuracy and a few millimeters resolution.
Ultrasound (hence “ultrasonic distance sensor”) is sound in
frequency (pitch) higher than we humans can hear, it is usually
around 33 to 40 KHz. Two signals are required, one output triggers
the sensor to transmit a sort ultrasound burst (like a “ping” in
submarines sonar, yes this is a sonar also) and an input that listens
for an “echo” response from the sensor. Sound travels at around
340m/second. Counting the “trigger” to “echo” time provides the
distance of a nearby object. This is called Time of Flight (TOF)
technique. The sound “flies” the double of the distance since sound
has to go from the sensor to the object and then back. That is around
59usecs per cm of object distance. The “viewing angle” is around 15
degrees. The cost is near 1$.

A latest technological advancing is light TOF distance sensors. They
are IC digital sensors, providing distance numerically in millimeter

accuracy. They measure the time of flight of light
instead of sound. Light travels about a million times
faster than sound, so they do an awesome job when
they provide mm accuracy. Their size is much smaller,

their range is around 1-2 meters which degrades on sunlight a lot.
Their cost is around 4$. The name they come by is usually “optical
range finder”.

Proximity detection:

Rather than measuring the distance of an object, in many cases we
want to know if an object is nearby or not. This true/false
information is a lot less demanding in accuracy and is usually made
by shining a light and measuring if there is reflection of it. It is
practical to use an invisible light for that job, the infrared light
(IR). There are IR LEDs and light detectors called phototransistors
for that. As we mentioned in the chapter 1.3 about LEDs, IR is light
frequencies lower than the frequency of the red color (the lower

p 68 1.11 Sensors and things that move stuff and display stuff

edge of the visible spectrum) or in other words, of longer
wavelength than red color (around 750nm). IR LEDs are usually in
940nm (nanometers) wavelength and less frequently at 840nm.
Phototransistors come with filters allowing only 940nm or 840nm
to pass through them, leaving a black color within the spectrum our

eyes can see. Phototransistors are simply transistors
(BJT) open to incoming light. They present the
property of becoming more conductive (having less
resistance) the more light (IR wavelength) shines on
them. It is practical to use boards like the one on the
left which integrate an amplifier and comparator with
selectable “threshold” of reflected light intensity, thus
selectivity of distance of object detection. They
provide an output that is true or false (0 or 1) for a
GPIO input pin of our MCU. They cost around 0.5$.

An inherent pitfall of IR light reflection principle is that a black
object will reflect less light than a white object so deeply black
objects may be missed. Another application is to detect if the object
is white or black. Their range is a few centimeters. A variation of

those is the photo-interrupter or optocoupler (left) that
detects if a non-transparent obstacle interrupts the LED
light shining directly on the phototransistor. This is used

a lot in counting things like gear’s teeth passing through the sensor.

If we place a magnet in the object we want to detect, then we may
use magnet proximity sensors or sensors of
magnetic fields. The most widely used and

simple enough are the Reed switches (left). They
are small pieces of glass containing two conducts of
magnetic material in close proximity. When magnetic
field is applied (a magnet approaches), the conducts
are magnetized and touch each other. We find them
enclosed in many forms like the ones on the left
named “magnetic door switches”. Their practical
applications seem endless, some examples are:
detecting if a phone handle is in place, detecting an
open door or window for security alarm system,
detecting if a refrigerator door is closed and countless

p 69 1.11 Sensors and things that move stuff and display stuff

others. Another sensor for the same job is the Hall Effect magnetic
sensor. They require a supply voltage and offer a digital output pin.
Reed switches have a life of about one billion ON/OFF transitions
but in counting rotating objects sometimes that is not enough. They
also suffer from vibrations. Hall sensors have infinite ON/OFF
transitions, they are vibration tolerant, are more reliable and fast.
They also come in analog output, where the output voltage they
produce is proportional to the magnetic field they sense. A final note
for all the previous is that the magnet has to have specified direction
since they sense magnetic field in one axis only (magnetic field is a
vector field i.e. it points from North to South pole). Reed switches
sense on the axis along their body, hall sensors on the axis
perpendicular to their body. If the magnetic field is directed
vertically to their sensing axis they will not “feel” it. Some hall
sensors have polarity (need North Pole facing them for example,
while South Pole will not do) Reed switches don’t care.

On detecting proximity of humans (like automatic doors and
lambs do) two main methods are used, both relying on the fact that
humans are moving. One uses the human’s body temperature that

is usually different from that of the
environment. It works like the thermal cameras
do, any object emits infrared light (IR) that is
more intense the higher its temperature is. This
IR light is called “far infrared” because it is far

away in the spectrum of the “near infrared” the IR LEDs are (its
wavelength is around 10000nm). Sensors called “PIR sensors” are
one pixel thermal cameras and detect changes of the overall

temperature which are caused by the (hotter) human’s
body motion. Those are prone to false detections by
small animals or sudden changes in sunlight, the second
method uses a real radar of microwave (>1GHz)
electromagnetic waves but the radar does not rotate, it
looks always at the same direction. Reflected radio

waves of any moving object are magically making a “detection” signal
(using Doppler Effect caused by the object’s speed). Both systems
cost usually less than 2$. They require only a digital input that is 0
for no detection, 1 for detection or even provide a relay switch

p 70 1.11 Sensors and things that move stuff and display stuff

conduct output. Note that it is controversial if the microwave radio
waves of such low power cause any health trouble.

Rotary encoders:

Rotary encoders measure the rotation of objects like a shaft of a
motor, a gear etc. If we place on a rotating shaft a transparent /
opaque scheme like the one following and two photo-interrupters,
as the shaft rotates we get the following signals (each is 1 or 0) with
a respective “phase” or pattern labeling number.

That way, if counting is increasing (1,2,3,4,1,2,3…) the above shaft
rotates anticlockwise, if decreasing (3,2,1,4,3,2…) it goes
clockwise. By dividing the circle in those 0/1 areas we know the

angle we are at with precision (resolution) of
360o/patterns number. Usual encoders provide
resolution of 100 “clicks” per rotation. The
rotating pattern may also be “single” and use two
adjacently placed photo-interrupters.

We may distinguish them in two categories. The
first for measuring position precisely for

robotics and stuff moving with motors. The second
(left) for making knobs that rotate indefinitely to any
direction for interacting with our hands with machines,
such as selecting the volume to an audio amplifier.

Those are also inside a computer mouse wheel. There is an even
simpler form of encoders, those which measure “clicks per rotation”
but not direction. Those have a single photo-interrupter or a single
Hall Effect sensor and a rotating magnet.

p 71 1.11 Sensors and things that move stuff and display stuff

Sensing direction and motion:

The following kinds of sensors are used for measuring what
direction our device is looking towards: Accelerometers,
Gyroscopes and Magnetometers. Each of those is a triple-sensor
device, each is having 3 sensors vertical to each other. We live in a
3-dimensional world. Any 3 vertical to each other lines can serve as
a “3 axis coordinate system” that can define any point in space with
“coordinates” (named “x”, “y” and “z”). We call such sensors “XYZ”
or 3 axis sensors. So, following some basic physics, accelerometers
measure the acceleration in each axis, gyroscopes (gyros) measure
the angular acceleration (that is the “rotational acceleration) in each
axis fast and fine enough and magnetometers surely measure the
intensity of magnetic field (3 axis) acting as a compass usually. Our
smartphone and our tablet find which direction the “down” is using
mainly an accelerometer. The gravity of the earth we are living in
causes a “downwards” like acceleration to all objects which we call
“1 G acceleration”. 1G is about (10 meters per second) speed change
per second (10m/sec2), it is present on any object on earth and is
pointing downwards. Even if an object is still, the gravity force is
like a downwards acceleration of 1G, so with a 3 axis accelerometer
we usually sense the downwards direction (as a pointing vector) and

the tilt and roll “inclination” from the horizontal
plane. A cheap and well established I2C board with
accelerometer, gyroscope and a lot of supported
software is the MPU-6050 (left) costing less than 2$.

Detection of water and touch:

Water is not only the most common liquid, it is
about the 70% of our body. How can you sense it?
Many methods exist. Mechanical floats which
activate a switch when lifted by buoyancy,
resistance sensors that just measure resistance (air
has practically infinite resistance as an insulator,

water has some KOhms of resistance), capacity and a few others.
About capacity, seeing it oversimplified, an open air capacitor (like
two metal plates close to each other) increases it capacity a lot (about
100 times) if water is between its plates. Well water is the 70% of

p 72 1.11 Sensors and things that move stuff and display stuff

our fingers so, taking this effect into much engineering, the
“capacitive” touch screens of our smartphones are made. Touch
sensors are single “touching detection” sensors that detect when the
human body (our fingers usually) comes very close to them or
touches them. Magically they are comprised of just a wire so they
are maybe the only non-material sensors, but electronics are
required in the MCU side.

Other:

Just naming: RFID readers (contactless card – tag readers), weight
– force measuring sensors and precision ADC boards for such,
sensors of various gases (CO2, methane etc), pressure sensors for
liquids or air, vibration sensors, sound detection, temperature
measuring from distance using Far Infrared Radiation and more. Try
some “Googling” in “Arduino sensor” or any specialty sensor if you
are not covered up to this point. It is not enough to know if a sensor
for a special application exists and how much it costs, you have to
be able to use it. This book is about to provide to you the common
and basic knowledge, enough to fill any gap yourself, unless your
project is near the limits of the accuracy in technology for what you
try to do and special scientific and engineering knowledge is
required (e.g. try to measure weight in precision more than 1ppm,
measure temperature with accuracy higher than 0.01oC etc.)

p 73 1.12 Programming: the big picture and one easy program

1.12 PROGRAMMING: THE BIG PICTURE AND

ONE EASY PROGRAM

Let’s relax our minds of this previous endless list of sensors, and go
for a visit to a totally different world. Software. This chapter will
assume you do not even know what programming is. We will only
cover here an LED blinking program in C++ for Arduinos. If you
can write this yourself, do a hop to the next chapter. If not, have fun
meeting your first program. We will be down to practical reality,
as we are used to. If you are about to practice this tutorial with real
hardware, you need a PC (with Windows or Linux or Apple’s OS
X) and an Arduino UNO board with its USB cable. Nothing else.

THE WHOLE PROCEDURE:

Anything done for first time takes long time. All the procedure
needed to be done in order to have our first testing program running
should take you about 10 minutes if all go well (in order to install /
setup things) and less than a minute after your system is setup to
begin writing your second program.

Learning about programming Arduinos is a different story. You
need to devote a few hours to understand the very basic stuff and
there the road has just begun. If you are not a programmer you most
probably need more than a year to become a well-educated expert
in Arduino programming but the procedure will be 80% fun, 20%
stretching your patience, 0% labor if you are challenged by
electronics projects. This book is about to take you to the basic
understanding and leave you in a level where you may continue that
road yourself.

The procedure to be followed in order to be able to program is:

 Setup any software required (just one does the job)

 Connect our Arduino (we will use UNO here)

 Verify that our connection is OK

 Write – and test as you write – our own program

p 74 1.12 Programming: the big picture and one easy program

INSTALLATION OF REQUIRED TOOLS

As said, Arduino’s mission is to involve a non-programmer or a
beginner as easily as possible to creating things. Setting up what is
required is about installing only one program which looks as simple
as the Windows Notepad. Consider here that other programming
missions (non-Arduino) require to setup a lot more stuff which are
very complex and moreover to do 10x to 100x times more complex
procedures in them in order to start writing your first line of code.
The one and only application we need to get from the internet and
install is the Arduino IDE. I, D, E stands for Integrated
Development Environment and is the application that we use to
write programs and do other programming relative operations.

The source for all (and most importantly the official reference) is
the web site. In there, inside the “software
downloads” section we find the Arduino IDE download page. It is
assumed here that the reader of this book will know how to
accomplish a “classic” application installation on her/his operating
system (e.g. on Microsoft Windows, just follow the installer
prompts pressing all the “Next” and “Yes” buttons). When this
installation is finished, you should execute your new application and

see it popping up
(left). This is the – by
design – simplest
programming IDE.
Hovering your
mouse over the just 6
buttons you see on
its toolbar, you see
that they are: Verify,
Upload, New,
Open, Save and
Serial monitor.

p 75 1.12 Programming: the big picture and one easy program

CONNECTING TO YOUR ARDUINO UNO

Connect your Arduino UNO to an available USB socket. Your
device should be recognized by your operating system (you should
not see an error anyway like “unknown device connected”) after
having installed the IDE that installs any driver necessary. Your
Arduino UNO should also be powered up (some LEDs shining) by
the 5V power supply provided to it by the USB bus.

By this moment a “serial port” device (that is a USB to UART device)
should have been added to your computer. In Windows they are
called COMxx, in Unix OSs like Linux or MAC OS X, they are
called dev/tty.something. More on this next.

Open (if not already) the Arduino IDE, go to “Tools” menu and
make sure the right board is selected

(Board: “Arduino/Genuino Uno”). Genuino is a name coined by the
Arduino team later but everybody is still using their original one,
Arduino. Then select the correct Port, which is the correct Serial
Port. You should see a list of serial ports. If none is advising that an
Arduino Uno is connected to it, you have to try each of them. After
selecting a port, try “Get Board Info”. If you have selected the right

one and if all the driver installation works
well (99% of cases) the message box on
the left should appear. Otherwise an
error message should appear. If none of
the serial ports work (or none is present),

p 76 1.12 Programming: the big picture and one easy program

you should “Google” for your case (operating system etc.) and
hopefully many nice guys will have posted a solution for you.

Having done that in success, nothing is between you and
programming your board.

OK… WHAT IS “PROGRAMMING”?

Computers do some operations, unfortunately each of those
operations is not complicated, but rather it is simple. Each of those
operations is a command, stack many commands together and you
have a program. Feed the computer (Arduino’s ATMEGA328P
MCU in our case) with the program, command it to start its
execution (run) and you have an operating device acting as an alive
computer. A program may finish doing what is intended to do quite
quickly and leave our computer do nothing, or it may never end, as
is usually the case. This set of commands is defined by the
programing language we use. The execution of commands is done
one by one (in a single core computer as in our case of Arduino Uno
and the 95% of popular MCUs), when one finishes, the next is
executed unless the executing command “jumps” to another one that
is not the next. The execution flow can make various branches or
loops.

WHAT IS A PROGRAMMING LANGUAGE?

There are many (more than 50) programming languages out there,
about the 90% of all programming is done using the 5-8 most
popular ones, one of which is the C++ used in Arduino
programming. C++ bizarre name comes from its predecessor, C
which is the most popular in MCUs programming. C++ is C plus
some extensions (the ++ symbol increases the value of a variable by
1 in C).

Programming languages are not any close to human languages, just
as computers operate so differently than humans do (yet). So it is
unfortunate that a program could not be like the following:

1. Connect to the Bank XXXXX computer
2. Hack it and access the clients’ accounts data - Comment:(displaying the

progress in the meanwhile like in action movies)

p 77 1.12 Programming: the big picture and one easy program

3. Find the account number YYYYYYYYY
4. Add to the deposit 1 billion USD
5. Disconnect
6. Say “program finished successfully. Quit your job and book a ticket to

Bahamas”

But rather the available commands are quite stupid. It is the fact that
many of those simple and stupid commands (thousands of them) do
a little bit clever things. We use a programming language to write
our programs. Any command or syntax that is not “known” to the
language we are using blocks all execution with an error. So
programming has strict rules of writing our program or “code”.

WHAT C++ COMMANDS MAY DO

To take the first vague idea of the commands we can use in our
programs, we will present some of the most used and useful kinds.

 Arithmetic operations (addition, subtraction, division,
multiplication, other mathematical like square root etc.)

 Numbers comparisons

 Assign to “variables” numerical values or text

 IF something is true execute a part of code otherwise execute
another (jump execution flow not to the next command but on
another command elsewhere)

 Execute a part of code for some times (loops)

 Make our own “commands” called functions.

There are also Arduino specific “functions” coming ready as the
Arduino “framework” or “library” which control any MCUs
peripheral quite easily, like reading the input value or setting the
output value of a GPIO pin, communicating data over serial
interfaces (UART, I2C, SPI etc.) counting time and do what almost
all our MCU’s internal peripherals can do.

Besides its commands, C++ offers ways to handle numeric data
storage (in “variables” or “arrays”) reusable code in functions and in
classes, customized data structures and other many useful
functionalities mainly for data storage and manipulation. That was
a lot of theory… let’s get to the real stuff.

p 78 1.12 Programming: the big picture and one easy program

SOME LANGUAGE SYNTAX FIRST

The “New” Arduino IDE window already contained the following
program:

void setup() {

 // put your setup code here, to run once:

}

void loop() {

 // put your main code here, to run repeatedly:

}

The basics we have to know are:

 “//” denotes comment. Anything following this in the same
line is ignored by the language but is useful for us to write
notes. If we need multi-line commands we can use “/*” to
begin and “*/” to end our comment session.

 void setup() is a function, beginning with opening brace
“{“ ending with closing brace “}”. Same for the loop()
function. The “()” parenthesis denote their parameters
which in the previous are none. “void” denotes the kind of
value they return, the previous returns nothing.

This program is a two empty functions program, therefore doing
nothing. Let’s fill them up with some commands. We will do it the
easy way. Click the menu “file”, submenu “examples” sub menu
“01.Basics” and select Blink program from there

p 79 1.12 Programming: the big picture and one easy program

Ignoring the first lines of comments, this is the program that just
appeared in our IDE:

This is a complete program. Before explaining it, since practicality
in this book surpasses theory, let’s use it first and explain it
afterwards. Just notice the same setup() and loop() functions right
there again. Take one minute to read it and imagine what it will do.

TRANSFERRING OUR FIRST PROGRAM TO

THE ARDUINO BOARD AND RUNNING IT

If your Arduino is already connected via
USB, and the serial port is set, just press the
“upload” button (left). If the serial
communication is OK you will see a
message in the IDE “Done uploading” and
most amazingly you will see an LED on your

board blinking once every second and forever. That’s a joy of seeing
a program running well on a new hardware…

Seeing that in practice, lets revisit this program to explain some
functions used there we have not explained so far.

First, as the comments also point out (line 25 of the program) any
commands put in the setup() run once when the system starts up.
And as the comments point out in line 31, after the commands inside
the setup() finish, execution goes to the first command (line) of the
loop(). When execution point reaches the end of the loop() (closing
brace in line 37) it goes again to its beginning (line 33) and that goes
on forever.

p 80 1.12 Programming: the big picture and one easy program

What does pinMode() do? It sets a GPIO pin to input or output
mode.

What does digitalWrite() do? It sets a GPIO pin already set in
output mode to high or low. Low is 0Volts, high is Voltage equal to
the power supply which is 5V

What does delay() do? It does nothing keeping the MCU waiting
for some time to pass, counted in milliseconds.

Notice that every function or command we use ends with a
semicolon “;”. This is an annoying syntax of the language, we will
get used to it.

If you have felt well and deeply how this works let’s move on to play
a little.

LET’S PLAY A LITTLE

Let’s make the following: If a button is pressed the LED should be
always ON, if not the LED should blink.

We have to connect a real button on a GPIO pin, lets choose
randomly pin 12 (actually pin 13 was avoided since it is connected
to the on-board LED) and either connect a button between this pin
and its nearby Ground (GND) pin or sort those two together with a

“U” shape piece of wire when we want to “play” with it. So, pin 12
will be either unconnected or connected to the Ground (0V).

Now let’s set this pin as GPIO input (once, on program start in
setup() of course)

void setup() {

 pinMode(LED_BUILTIN, OUTPUT);

 pinMode(12,INPUT_PULLUP);

}

p 81 1.12 Programming: the big picture and one easy program

Now let’s read the GPIO #12’s value in the loop() with the
digitalRead() function and use the grail of the programming
commands, “if” to do our logic. The whole program, comments
removed, is here:

Explaining all: Pin 12 uses a pull-up resistor internal to the MCU.
That is a resistor about 30KOhms connected to the positive 5V
power supply. This holds its state (as input that it is) to 5V that is
HIGH or “1” as long as our button is not pressed (pin 12 is connected
to nothing).

Our button connects to the Ground (0 Volts), so as long as we press
it, its voltage is 0V that is “LOW” or “0”. Reading the lines 7 and
after you should understand how “if” works. A final note is that: to
compere if two numbers are equal we have to write

“if (numberA == numberB)”, not “if (numberA = numberB)”.

Of course, even with the little programming knowledge served up
to this point, we can write our program doing the exactly same thing
with at least one different way. Yes, many programs can do the same
functionality. The best is the simplest and the more comprehensive
by the author, by some others it is the most expandable to new
functions.

p 82 1.13 We just circumnavigated the electronics planet, lets land and do that again on the ground with a

fast car

1.13 WE JUST CIRCUMNAVIGATED THE

ELECTRONICS PLANET, LETS LAND

AND DO THAT AGAIN ON THE GROUND

WITH A FAST CAR

So far we had our first taste of the electronics wonderland. At the next
section we will revisit almost everything we said so far and more,
looking at them from a closer point of view. Let’s ride.

p 83 2.1 Voltage and Current real engineering

2. DRIVE FAST

THROUGH THE

ELECTRONICS

WONDERLAND

2.1 VOLTAGE AND CURRENT REAL ENGINEERING

This world is not ideal, engineering is required almost
everywhere. Mathematical theory applies without
corrections almost nowhere. Starting our next tour with this
terrifying quote, let’s explore that in the most fundamental stuff of
electronics, voltage and current.

Almost all signals are voltages. Voltage represents (practically in
every analog signal) how much something is e.g. a physical quantity
like temperature. If the voltage introduces errors (as we said in the
“sensors” section of 1.11 about measurements) those errors add up
to our measurements errors. Current on the other hand, either
induces voltage errors or kills our circuits with a smoky death. Let’s
see the most usual traps we usually fall upon regarding bad voltage
or current engineering and how to avoid them.

PITFALL #1: UNCONNECTED INPUTS

This pitfall has so big effect, that can make even a digital signal to
deviate so much that may go from “1” to “0” or vice versa.

p 84 2.1 Voltage and Current real engineering

The case is to have as input, something that is either connected to
nothing (is an open circuit), or is connected to something of defined
voltage with a series resistor that is huge, tens of Mega Ohms or
more. A classic such mistake is to read the value of an MCU digital

input or the value of an MCU ADC
analog input using the circuit of the left.
When the button is pressed, the input
is connected to a well-defined voltage
(3V). But while it is released the input
is connected to nothing. We call this

state “floating” or “tri-state”. What defines the voltage of a wire
(a circuit node) that “hangs in the air”? Actually randomness. In
reality, on this example it may fluctuate from 0V to the supply
voltage of the MCU (5V on Arduinos) due to internal protection
diodes limiting it to this range. Physically it behaves as a receiver’s
antenna. It may change either about a hundred times per second at
the frequency of the electrical grid (50Hz or 60Hz) by interference
of nearby electrical cables, or change every some seconds to some
hours by electric ions in the atmosphere or parasitic resistance of
some Giga Ohms to nearby wires, caused e.g. by humidity, slowly
charging the parasitic capacitance of the input (engineering is
required almost everywhere…)

The usual cure to such situations is to use a resistor to “tight” our
floating node to the ground (0V) or to the supply voltage. The

circuit on the left solves this problem
with a resistor big enough to avoid high
current consumption while the button
is pressed. Using 10K resistor for
example, causes I = V/R =

3V/10000Ohm = 0.3mA current consumption while the button is
pressed and also keeps the input voltage well at 0V while button is

up. A variation is the circuit on the left.

Supply voltage is usually called VCC.
(5V in Arduinos, 3.3V in most MCUs).
The input’s value in this circuit is
reversed, 1 while not pressed, 0 while

pressed, nothing we cannot handle in software. Since this is a
frequent problem, MCUs provide this resistor internally which is

p 85 2.1 Voltage and Current real engineering

we can choose to be connected or not by software. Giving more
terminology as we go, the resistor on the previous circuit is called
“pull down” resistor and the resistor on the last circuit is called
“pull up”. “Up” or “high-side” is the VCC, “down” or “low side” is

the ground. We use
to keep that in
drawing also as
much as we can,
(left) placing VCC
upwards and ground
downwards. From

now on, forget batteries symbols, we will go with the VCC symbol
in our schematics like in the last two circuits. The two last circuits
are equal, VCC is called “net name”, since it is in many places we
spare to draw many lines of wire, all same net names are one and
the same node.

PITFALL #2: SORT CIRCUITS AND ISSUES ON

VOLTAGE SOURCES CONNECTIONS

Let’s briefly talk about real (not ideal) voltage sources. Let’s take
a voltage source we all have some feeling of, a battery, say an
alkaline AA battery. Let’s also take a wire that is 0.001Ohms that is
about a 2mm wide, 10cm long wire of copper. Sorting our battery
with it makes 1.5V on a 1mOhm resistor. So we will see current of
1500 Amperes (with quite devastating sparks and magnetic fields)?
Nop! Current will be about 10 - 20Amps with a fresh battery. This

is why: Those batteries have inside them electrodes
and chemical stuff which make a total internal
resistance (that is parasitic / unwanted resistance)
of about 0.1 Ohms when the battery is fresh,
increasing to about 0.3 ohms at 50% of its energy
usage. So, this battery is an ideal voltage source with
a series resistor of a fraction of an Ohm. Coin cell
batteries have about 20-50 Ohms, the lead-acid

battery of a car has around 50mOhms.

What about power supplies? Those also have internal resistance
(of less than one Ohm) but mostly important they can provide

p 86 2.1 Voltage and Current real engineering

current up to a limit (specified on them). Exceeding that limit either
their voltage drops as to protect themselves from burning, or they
burn by overheating. That current specification is the upper limit of
capability to deliver current. We should always chose a supply with
150% at least of the maximum current our circuit may ever
consume. Last but not least, there is another voltage source that is
on dangerous voltage levels (to our body) and has a lot of current to
deliver if sorted. That is the mains power in our house. Sort
circuiting it is not fan at all, but a nutsy and dangerous explosion.
The bottom line is that we must always try as to make sure that a
voltage source may never get sort circuited. Fuses, little devices
that blow themselves when current flow exceeds a specified value
help to achieve this, others need replacement for our circuit to work
again, others are “resettable” and restart working when current is
low again.

What about connecting together two or more GPIOs of an MCU
configured as outputs? The MCU internal circuitry connects them
to the VCC when set to “1” and to Ground when set to “0”. Is this

connection ideal, with
zero resistance? Let’s
imagine that it is. On the
circuit on the left in that
case we have quite a big
problem. If output A is 0
and output B is 1 what

happens is that the power supply strangles at its limit. Moreover, if
a high current capable supply is used, let’s say, a big 10A supply,
will the internal switches (MOSFETS) of the MCU handle such
current or will they make a puff of smoke and decease? Their
absolute maximum current specification unfortunately is below
100mAmps! (Each MCU has its own specs). In reality GPIOs

MOSFETS have a resistance
that is about 30 Ohms (differs
from MCU to MCU) so that at
least limits the current in such
a situation, but yet to about
100mA Doing the previous
example or that on the left is

p 87 2.1 Voltage and Current real engineering

still a bad idea. It may burn all the MCU or that GPIO pin only. The
safe current limit in most MCUs GPIOs is around 20mA. In such
cases a resistor should be placed in series to limit the maximum
current.

PITFALL #3: WIRES TOO THIN

The biggest consideration we take when the word “current” comes
to our mind is: “is our wire thick enough for it?” Wires are almost
always made of copper. Copper is of the most conductive metals but
still it has some resistance. 1 meter of copper wire of 1mm diameter
has resistance of about 20mOhms. Halving the length halves the
resistance, halving its cross section area doubles its resistance. This
unwanted resistance makes problems. High current flow creates an
even higher voltage across our wire equal to V = I*R (a “voltage
drop” that we will visit in the next chapter). Another issue it has is
that resistors (aka wires) heat up according to how much current
flows through them (a topic we will visit this in the next chapter). If
we use a thin wire to pass current through it, over a current value it
will heat noticeably and over another, even higher value, it will melt
and stop working (sometimes by fire on its plastic insulation if not a
good quality one). The following table shows a picture of
approximate current limits as well as the wire’s resistance.

Gauge
(AWG)

Conductor
Diameter

Inches

Conductor
Diameter

mm

Conductor
cross

section in
mm2

milli
Ohms
per ft.

milli
Ohms
per m

Maximum
amps for
chassis
wiring

1 0.289 7.35 42.4 0.1239 0.40639 211

4 0.204 5.19 21.1 0.2485 0.81508 135

10 0.102 2.59 5.26 0.9989 3.27639 55

14 0.064 1.63 2.08 2.525 8.282 32

18 0.040 1.02 0.823 6.385 20.9428 16

22 0.025 0.65 0.327 16.14 52.9392 7

24 0.020 0.51 0.205 25.67 84.1976 3.5

26 0.016 0.40 0.128 40.81 133.857 2.2

29 0.011 0.29 0.0647 81.83 268.402 1.2

32 0.008 0.20 0.0324 164.1 538.248 0.53

35 0.006 0.14 0.0159 329 1079.12 0.27

38 0.004 0.10 0.00811 659.6 2163 0.13

p 88 2.1 Voltage and Current real engineering

In practice when connecting GPIOs of our MCU we shouldn’t care
of whatever our wire is, connecting motors or other current hungry
devices should make us concern. It is very hard to see any fire below
2A current, a very sort puff of smoke probably should be all the fun.
Be very careful of DuPont wires! Cheap ones may have around
0.2Ohms per 20cm length and hold maximum 2A.

PITFALL #4: EXCESSIVE ELECTRIC NOISE

Noise is random fluctuations of voltage. In real world it is
everywhere, literally. Noise is the biggest pain in analog signals and

analog electronics in general. It
is created in amplifiers,
resistors, ADC measuring
inputs, and in sensors
themselves, adding up to the
measured signals. Noise defines
the resolution capability of
measurement. In sound systems
it is an annoying “hiss” sound.
Besides noise a signal can get
similar unwanted additions by
interference. We have
interference when a wire acts as
a receiving antenna to nearby
electromagnetic signals
travelling over the air. You may
already have heard a humming
sound in nearby speakers when
a cellphone is ringing.
Interference may also be

present by mains power 50-60Hz alternating current or by nearby
magnetic fields produced by coils, motors etc.

Noise is a big chapter itself. There are other pitfalls besides those
said, but it is a big analysis to go all over them as they play less part
in the game of deceiving us in the accuracy of measuring.

You may ask: Hey, you haven’t said a word yet about AC/DC!!
Patience…

p 89 2.2 Resistors recipes

2.2 RESISTORS RECIPES

About 80% of electronics design is about resistors and unwanted
resistances. So far we have introduced Mr. Ohm’s equation (I =
V/R and its variations R = V/I and V = R•I). We will introduce only
3 more equations here which are really useful to all electronic
designs. Mathematics as we said are kept as far away as possible but
some very simple are in our way all the time.

VOLTAGE DIVIDER

Voltage divider is maybe the most important structure of electronics
dealing with non-digital signals (call them analog electronics). It
can’t be simpler. Here it is, it’s just two resistors in series:

And it’s equation we have to know is:

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛

𝑅2

𝑅1 + 𝑅2

(Middle voltage equals the input voltage by the ratio of
the bottom resistor to the resistor sum)

They connect their “outer” ends to a voltage, their middle point is a
fraction of the “outer” or supplying voltage. This is going to be a guy
we will usually hang out with in electronics designs, so let’s meet
him better.

Let’s place any two same resistors for R1 and R2. The output voltage
will be Vin/2. If R1 is zero, Vout = Vin. If R2 is zero, Vout = 0V. To feel

this circuit’s operation better we may visualize that Vout (the

“middle” point) “connects more” to the voltage Vin the less the R1
resistor is and the more the R2 resistor is and likewise it “connects
more” to the 0V Ground point the less the resistor R2 is and the
more the resistor R1 is as we may see in the table that follows. There

p 90 2.2 Resistors recipes

we have as an example R1
equal to 1K. Doubling
both the resistors provides
the same Vout. It is the
ratio of the bottom to
total resistor that matters
only. Using very low
Ohm resistors to do the
same job (e.g. 1Ohm and
1Ohm for R1=R2)
introduces the problem of

increasing the current flowing from both the resistors. Using very
high values seems to spare current drawing but too high values may
introduce problems, as we will see next of R2’s value dropping by
parasitic resistances connected parallel to it. Usual values for most
jobs are in the region of 1K to 50K for total resistance (R1+R2).

Let’s see an everyday met voltage divider. When we use a voltage
source with an internal resistance (all batteries for example) or a

voltage supply connected by a cable of non-negligible
resistance (e.g. thin and long), we have a circuit like the
one on the left. Assume we connect a device that is
supplied by 5V and needs (consumes) 200mA. Such a
device is like a resistor equal to R = V/I = 5/0.2 = 25
Ohm. Let’s supply this by the USB bus’s 5V using a long
low quality cable that has 2 Ohms resistance (numbers
are realistic). This arrangement will be like the circuit
on the left. Is this a voltage divider? Yes. How much is
the supply voltage on the poles of our device? It is
5V*25Ω/(25Ω+2Ω) = 4.63V instead of 5V. Where
have the 5V – 4.63V = 0.37V gone? Well, they are the

Voltage across the R1 resistor. Current I is equal to I = V/R =

5V/(total resistance) = 5V/(R1+R2) = 5V/27 Ω = 0.185A. The
voltage across R1 is V = R*I = 2 Ω *0.185A = 0.37V!!! This is called
voltage drop. If we apply the Ohms low in R2 we have V = R*I =

25 Ω*0.185A = 4.63V = Vout! Almost no equation is required to be
remembered as you can see since we can easily calculate stuff from
more basic laws, but the voltage divider is very frequently met and it
is practical to memorize it.

Vin R1 (KΩ) R2 (ΚΩ) Vout

1 1 0(sorted) 0.000

1 1 0.1 0.091

1 1 0.5 0.333

1 1 1 0.500

1 1 2 0.667

1 1 5 0.833

1 1 50 0.980

1 1 ∞(open) 1.000

p 91 2.2 Resistors recipes

TOTAL RESISTANCE

As said in chapter 1.2, resistors connected in series behave as one
resistor with value that is the sum of their resistance.

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅1 + 𝑅2 + 𝑅3

What about resistors connected in parallel? They behave as a resistor
that is less than the smallest of those. That’s since any parallel road
the current can take, makes it flow easier in total, than having one
road only. The equation is bigger here but do not worry, we will
see very few more through the rest of the book.

𝑅𝑡𝑜𝑡𝑎𝑙 =
𝑅1 ∙ 𝑅2

𝑅1 + 𝑅2

𝑅𝑡𝑜𝑡𝑎𝑙 =
𝑅1 ∙ 𝑅2 ∙ 𝑅3

𝑅1 + 𝑅2 + 𝑅3

If R1 = R2, total resistance is the ½. If R1 = R2 = R3, total resistance
is 1/3 etc. Another quantitative concept is that if we have a small
resistor and connect parallel to it a big one (even if that is a parasitic
resistance), the total resistance will lower of course, but will drop
very little (e.g. 1Ω // 1KΩ makes Rtotal = 0.999 Ω - 0.1% drop).
The opposite happens if our resistor is big (e.g. 10KΩ // 1KΩ
makes Rtotal = 0.909KΩ - 909% drop).

HEAT AND POWER

There is a physical phenomenon that is useful in life and mostly
unwanted in electronics. Current passing through any resistor
produces thermal energy – heat. Old lamp’s filaments are resistors
heating up, so much that they reach a temperature of about 30000C
(5000oF). Electric heaters, cookers etc. use also resistors that heat
up. Introducing some simple and necessary physics, resistors
actually produce a flow of thermal energy, or equally, have a rate of
heat produced per second. The produced energy per time is called
thermal power, in our case it is calories or Joules per second or

p 92 2.2 Resistors recipes

Watts (after Mr James Watt at around 1760’s, well, imagine the
conversation: ”- What is your name? - My name is James Watt. -
What?”). Heat (thermal energy), heat rate (thermal power) and
temperature (actually temperature rise) are different. Applying say
a 50Watts (W) thermal power to a lamp’s filament makes heat
production rate highly “concentrated” and thus gives a very high
temperature rise of around 3000oC. The same 50W in an electric
soldering iron tip will make about 400oC and the same 50W on an
electric heat radiator will make 1-5oC temperature rise.

Any resistor of same value (Ohms), no matter how it’s made or its
quality (a rusty wire, a transistor’s resistance, the most expensive
resistor in the world), will produce exactly the same heat rate or
thermal power if the same voltage is applied on it (also the same
current flows through it by the Ohm’s law correlation of R, V, I).
How much thermal power?

Power (Watts) = V•I

This is actually a conversion of energy from electric kind to thermal
kind. In resistors (in any electric resistance) the 100% of electric
power (energy per time) is converted into thermal power that
dissipates in the environment. So in resistors electric power =
thermal power. An opposite case is power supplies which produce
electric power (also rated in Watts). Avoiding more equations, you
can apply Ohms law inside the power equation yourself and replace
either the V to I*R, or the I to V/R to get more power dissipation
equations.

Why all those said? Resistors heat up, we do not want that, we
cannot avoid that ever and we have to choose the proper resistor to
be capable to dissipate that power without burning up. Resistors
have a power rating that is the maximum power they can handle.
The bigger size they are the more that is. We are good as long as we
do not exceed the maximum power rating ever. A 10W resistor for
example, will do the same function if any amount of power less than
its rating is applied, e.g. if V*I = 0.01W. More on resistor sizes on
the next chapter.

p 93 2.3 Components: Technologies, sizes and where to find them

2.3 COMPONENTS: TECHNOLOGIES, SIZES AND

WHERE TO FIND THEM

Having enough for theory about current and voltages, let’s move to
stuff we can touch and assemble. Components. Electronics are well
inside the engineering regime. Knowing the Ohm’s law but not
knowing how real resistors are and how to get and use them is
almost pointless. What someone can achieve in practical electronics
design and making, has mostly to do with how much his knowledge
extents to “what component is out there for the job and which one
is the best” than to theory, if of course one has comprehended the
theory basics. In this chapter we will take glances to most common
and useful components.

We will see the world of components as a line with two ends and all
the points in between. On the one end imagine components big
sized, old school, very handy for making prototypes with
breadboards, no matter how big or costly they are. On the other
end imagine what is used by the biggest tech companies inside the
latest smartphones or smartwatches. Miniature, most times
requiring great optical magnification to work with them, complex
in functionality and optimized for lowering cost. The road of
electronics starts at the first end of this line and goes towards the
other end as we may end up sometime designing real products that
will be intended to go in the market, mass produced. The
presentation following shows the most of this spectrum.

GENERAL CATEGORIES

Almost all have to do with the shape or the “package” used to host
the functionality such as a resistor, capacitor, chip (IC) etc. The
historically first dominating the era 1950-1990 were connected on
circuits using wires. They were mounted on the circuits boards

(PCBs, we will talk about analytically in next
chapter) by passing their wires (leads) through
holes and soldering them on the other PCB side
that carries the connection copper tracks.
Those are the Through Hole Technology

p 94 2.3 Components: Technologies, sizes and where to find them

(THT) components, handy for
breadboards, easy for hand soldering and
making some simple circuits by soldering
them together without even using a PCB
(image on the left is credited to the great
YouTube videos of “Great Scott”). In mass
production they are a nightmare. Even in
prototyping using PCBs their wires need
bending, soldering and then cutting. But
they are the beginner’s choice as well as the
only ones working on breadboards. You
should always have some of those for doing
quick experiments or small prototypes.

As technology progresses, both for easier
mass production and for miniaturizing electronic devices size,
Surface Mount Technology (SMT or SMD) have come into

the game to dominate
more than the 95% of
electronic components.
99% at least of all MCUs
in the last 20 years are
SMD, so are the most
important ICs. SMDs do
not have wires, but only
very sort pins. They are
designed to be soldered
on the same side of the
PCB – on the surface

they are mounted on. Not entering SMD technology stops
capabilities in almost a stone age, considering mostly the
advancements in the last 20+ years in digital electronics. SMDs on
the other hand are almost non usable for prototypes, unless a PCB
is designed and made for implementing the circuit we want to make.
Those PCB prototypes (we will see in the next chapter) enable
prototyping of complex projects easily and are cheaply produced on
order by many manufacturers (expect cost of around 10$ in Chinese
manufacturers for 5-10 pieces of your design). A “middle” way is to
use “breakout boards” available for some popular SMD ICs (limited

p 95 2.3 Components: Technologies, sizes and where to find them

in variety of course) which are small PCBs providing pins to actually
convert them into THT that can snap on breadboards.

SIZES OF PASSIVE SMDS

2-pins components come in standardized sizes. Those are the passive
components, resistors, capacitors, some coils and others. The sizes

you have to remember are those on the left. Their
names are from imperial system, 1206 means 0.12”
x 0.06” body dimensions etc. Very rarely, metric
system names are used which are very different.
Those sizes will be well inside your life when you

design PCBs. 1206 parts are big, too easy to handle and outdated.
0805 is a moderate size easy enough to handle, not too big for usual
projects (projects not space-tight). 0603 for most people will
require a little help of a magnifying glass, 0402 are terrifying small
and need to have a small microscope for assembling them!
Nowadays smartphones have even smaller components (e.g. 0201),
available in the market but terribly small to be handled by humans.

RESISTORS

Regardless of choice between THT and SMD technology, when
choosing a resistor the following specs must be considered:

Power rating:

In more than 95% of the resistors choice in practical circuits it is not
something to even bother about. When V*I may get higher than
0.1W though, it is a consideration.

In the case we do not care, here are the most used sizes we can
choose freely from:

1206

0805

0603
0402

p 96 2.3 Components: Technologies, sizes and where to find them

Name
Moun
ting

Usual
power
rating

(Watts)

Dimensions Description

Axial ¼ W
THT ¼

Body length:
~7mm

Diameter:
~2.5mm

The most
classic old

time resistor.

1206 SMD ¼ 3.2mm x
1.6mm

0805 SMD
0.125
(1/8)

2mm x
1.2mm

Recommende
d as neither
big nor tiny

0603 SMD
0.1

(1/10)
1.55mm x
0.85mm

0402 SMD
0.06

(1/16)
1mm x
0.5mm

 In case power rating is a concern, size just goes up as the Watts
rating goes up. Resistors may work hot (>100oC) when approaching
their power rating limit.

Name
Moun
ting

Usual
power
rating

(Watts)

Dimensions Description

Axial ½ W

THT ½

Body length:
~9mm

Diameter:
~3mm

Axial 1 W
THT 1

Body length:
~11mm

Diameter:
~5mm

Also up to
3W exist

Ceramic or

“cement” type
5W

THT 5

Body size~
21mm x
10mm x
10mm

p 97 2.3 Components: Technologies, sizes and where to find them

Ceramic or
“cement” type

10W-15W

THT 10-15

Body size~
50mm x
10mm x
10mm

It’s a rule of
physics, the

more the
power rating,
the more the
body surface

1210

SMD 0.5
3.2mm x
2.5mm

2512

SMD 1
6.3mm x
3.2mm

About the
upper power
limit of SMDs

Tolerance:

If we purchase resistors without taking care of their tolerance specs,
about 50% of them will be 5% accurate and about 50% will be 1%
accurate (in written specifications). Usually the price of 1%
tolerance or accuracy resistors is negligibly higher than the 5%.
Resistors cost of normal power rating anyway is so low that we will
never care (about 1cent of a dollar each in retail dropping the more
we buy). If we need for a special application higher accuracy the cost
increases as we depart from 1%. Tolerances up to 0.01% are easy
to find. If you measure ten 5% resistors, expect to find about nine
within less than 2% error. Error changes by soldering them,
temperature humidity and operating temperature.

Value:

It shouldn’t be possible to find in the market ANY resistor value we
may need for our design (e.g. 11234.2 Ω). There should be millions
of product models. Instead resistors values are standardized. The
higher the accuracy (lower tolerance) the more “analytical” are the
values that can be found. In very rare cases when there is not
precisely the value we want we may use resistors in series or in
parallel to achieve the required one.

5% Standard Values (EIA E24)

10 11 12 13 15 16 18 20 22 24 27 30

33 36 39 43 47 51 56 62 68 75 82 91

p 98 2.3 Components: Technologies, sizes and where to find them

1% Standard Values (EIA E96)

10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 12.1 12.4 12.7 13.0

13.3 13.7 14.0 14.3 14.7 15.0 15.4 15.8 16.2 16.5 16.9 17.4

17.8 18.2 18.7 19.1 19.6 20.0 20.5 21.0 21.5 22.1 22.6 23.2

23.7 24.3 24.9 25.5 26.1 26.7 27.4 28.0 28.7 29.4 30.1 30.9

31.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4 38.3 39.2 40.2 41.2

42.2 43.2 44.2 45.3 46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9

56.2 57.6 59.0 60.4 61.9 63.4 64.9 66.5 68.1 69.8 71.5 73.2

75.0 76.8 78.7 80.6 82.5 84.5 86.6 88.7 90.9 93.1 95.3 97.6

We can find any multiples or divisions of 10 from those e.g. for 5%
there can be 1Ω, 1.1Ω, 1.2Ω, 100K, 110K, 120K etc.

Values easy to find start from 0.01Ω and end at about 10MΩ.

How to read a resistor’s value:

So many different values resistors are hard to be organized with
labels for each one. The best and guarantied way is to use a
multimeter to measure their value. Most resistors have their value
printed on them in a peculiar way. Traditionally THT axial (round)
resistors use a color code. They did that for making it possible to
read their value from whatever angle you are looking the resistor at.
They use 10 colors for each digit, e.g. black is 0, brown is 1 etc. If
you “google” “resistor color code” great guides will pop up for this.
In SMD resistors as well as in some power THT, it is used to denote
with the last digit the power of 10, that is how many zeros to add to
the previous digit (e.g. 103 should be 10”+”000 = 10000Ω). A
multimeter as previously said is the mostly trusted way to do this.
More on measuring instruments in chapter 2.7.

Potentiometers / trimmers:

There are resistors the value of which is can be adjusted manually by
turning a knob or turning a screw head with a
screwdriver, all the way from zero to the
resistor’s maximum value. The knob type are
the potentiometers, the screw type are the
trimmers (one turn on the left or multi-turn on
the right). They come in many sizes. One thing
to take care is that they are power rated to less

p 99 2.3 Components: Technologies, sizes and where to find them

than 1/4th of a Watt usually and that the electric power they
consume (P=V*I) may vary according
to the position they are set (e.g. go too
high in very low Ohms settings).
Another interesting thing about them
is that they provide 3 pins, working as
you can see on the left, either as a
variable resistor if pins 1 & 3 or 2 & 3
are used, or as a voltage divider if all 3

pins are used. The way it works is actually sliding the wiper metal
contact across a resistive material spanning from pin 1 to pin 2.

CAPACITORS

In capacitors we care about size and fitting, capacity value and
instead of maximum power, maximum permissible voltage.

We will split the capacitors into 3 categories:

1. Less than 200nF
2. Between 200nF and 47uF
3. Over 47uF

In category 1, any capacitor, however small, it is specified
to operate to voltages up to 20V, so voltage is very rarely a
consideration. In SMDs we have the classic 1206, 0805,
0603 and 0402 sizes. In THTs we have the “radial” body that
is like a lentil bean with two wires (leads) coming out (left).
Almost all of those (SMD and THT) are made of ceramic

material, they are the ceramic capacitors.

In category 2, our job can be done with ceramic capacitors and
with other kinds as well. In all cases the maximum voltage is our
utmost consideration since the more the capacitance, the less goes
the maximum allowed voltage for the same size. Ceramic capacitors
of this category are also called multi-layer ceramic capacitors. X5R
and X7R categories have the best (lowest) tolerance, YxR, degrade
their capacity a lot the more the voltage is applied to them. Ceramic
capacitors are the best capacitors in performance, they behave
almost like ideal capacitors. The next capacitor type of choice is the

p 100 2.3 Components: Technologies, sizes and where to find them

electrolytic. It is a choice of necessity since they are the only ones
that can provide capacitance in category
3 or in category 2 in higher voltages
(>20V). We have said a few things about
those in chapter 1.4. Recapping, (you
may see the word “recapping” referring
to changing all aged electrolytic
capacitors with new!) electrolytic caps

have polarity, they explode or die with a puff of smell if voltage is
applied to the inverse direction, they have sort life (they are the
most common cause of faults in old electronic devices), they have
leakage (they self-discharge in about a minute in room temperature)
and they have a considerable in series parasitic resistance. About the
last, there are more expensive electrolytic capacitors characterized
as “low ESR”: low Equivalent Series Resistance. Expect about 1Ω -
10Ω resistance in most electrolytic capacitors and about 0.2Ω in low
ESR ones. Besides electrolytic and ceramics, there are other kinds
but not worth mentioning, since they are either outdated
technology, or used in very special applications. If you are desperate
though for long life or better performance in electrolytic category
of capacitors, there is lately a new kind of them called “solid polymer
electrolytic capacitors” offering low ESR, long life, but higher cost.

Regarding capacitors value, they begin from about 1pF (pico
Farad!) and end to about 10,000uF (10,000uF/16V is about 20mm
diameter X 30mm tall capacitor). There is a class of “ultracapacitors”
ranging from 0.5Farad to 10Farads! They are usually rated at 2.5V
only but their application is clearly a replacement for a battery rather
than a use inside a circuit as a capacitor. Expect a tolerance of about
5% to 30% in capacitors value. Values come at the 5% resistors
values (1, 1.1, 1.2, 1.3, 1.5 etc.) on multiples or divisions of 10.
We almost never bother of a 20% or even a 50% tolerance in a
capacitor. The real capacitance value is also affected by parasitic
capacitance. Wires close to each other make some 100s of pF
parasitic capacitance. Capacitors connected in parallel (or capacitors
parallel to parasitic capacities) add their values (Ctotal = C1+C2+…),
like resistors in series. Capacitors in series apply the equation of the
resistors in parallel to get the total capacitance.

p 101 2.3 Components: Technologies, sizes and where to find them

ACTIVE COMPONENTS:

TRANSISTORS AND LINEAR

REGULATORS

Those are usually 3 pin devices. They
both come in THT and in SMD
packages. Their size has to do with the
maximum power they can dissipate.

Those devices take some input electric power (V*I) and output
some less, converting a portion of the input electric power to
thermal power (an unwanted phenomenon but inevitable). The
bigger the dissipated thermal power is the bigger the component
body size has to be in order to avoid rising its temperature to
dangerous levels. Usually any IC will rest in peace if its temperature
goes over about 150oC (300oF) while it is operating. Under some
thermal power values (of about 2W) we may choose between SMD
or THT technology. Most of their body geometry is standardized in
standard body “packages” (named like: SOT23 – SOT 232, TO-92,
TO-220 etc.). Since the usual packages of 3 pin components are
more than 10 we will not mention them here.

ACTIVE COMPONENTS: ICS

ICs require a connection interface of 3 to hundreds of pins. Most
MCUs need from 20 to 100. An extreme far end here is the CPUs
of the PCs counting more than 1000 pins. Most ICs need an average
of 16 pins. The body size of the chip will depend on how its pins are
arranged, how close to each other or sparse they are and how many
pins it provides. Sparse pins are easy to handle and solder, close-up
pins provide tiny size and / or high pins count. SMD technology
goes all the time towards the tiny size. We have to adjust and be able

to “play” with this shortcoming. The
pin to pin distance is called pitch.
On the side of the “easy to use / big
in size” ICs there are the THT
packages. Almost all of them are
called DIP from (Dual inline
package) (left). Their pitch is always
0.1 inches, or equally 100mils,

p 102 2.3 Components: Technologies, sizes and where to find them

(1mil is 1/1000th of an inch) or equally 2.54mm. Their pin count is
starting from 4 and ends to 40 pins. A 40 pins DIP package IC has a
body size dimensions 52mm x 14mm. DIP packages are fitted
awesomely in breadboards. Breadboards holes are at 2.54mm /
100mills pitch. Moving on to SMDs, going from easier to handle to
smallest in occupying size, we meet:

SOIC packages: Usually ICs with simple
functionality, easy to solder, pitch is from 1.27mm
to 0.6mm, pin count averagely is 16 pins

QFP packages: Pitch here becomes aggressively
small at a standard of 0.5mm. Soldering needs
strong magnification glass to inspect if well done.
Pin count from 32 to 144pins. A usual package of
MCUs(!) with usual ranging from 32 to 100 pins
according to GPIOs pins count

QFN packages: Pitch is again at 0.5mm at the
most cases, harder to solder since solder is
“buried” in a sandwich between the non-exposed
pins and the PCBs pads (copper rectangles at the
place of each one of the IC’s pins). Very usual
package (unfortunately) of IC sensors and of
MCUs

BGA packages: BGA is for Ball Grid Array. It
provides the most space tight solution and the most
pain to design PCB properly and to solder.
Inspection of soldering needs trial and error or
using X-rays machines to see the soldering quality
of the internal pins

Well, chips are made to be used by manufactures at more than
99.99% and the rest of the market share is for hobbyists.
Manufacturers use robotic assembling machines and need to make
small devices, so small pin pitch is the inevitable result. Do not
worry. Humans are still in the process, hand manipulation and
soldering is achievable to the 99% of the chips in the market. It is
not very hard, it needs no expensive equipment. We will visit those

p 103 2.3 Components: Technologies, sizes and where to find them

techniques on the next chapter. Making small devices after all is a
big benefit.

CONNECTORS

There are thousands of connector types, lets focus at the most useful
ones. All connectors have a gender, male or female. Well, it is
sexism you will surely realize, engineers have named anything that
is long, like pins as males and anything that has a hole-shape where
pins are inserted as female…

Headers

All classic headers come at 2.54mm (100mils) pitch as single or dual
row, male or female with any pin count. Let’s see them, as to
understand what a “header” is, pictorially:

Arduino UNO has single raw female headers to connect things to it.
Headers of 50mil (1.27mm) pitch are also used in space tight
applications. They are less frequently met though and cost much
more. Generally male (pin) headers from China cost around 1$ per
300 pins

Terminals

In more accurate terminology, “terminal block connectors” provide
a way to connect / disconnect a cable stripped
at its end to another cable or a PCB or a
breadboard without soldering / disordering.
On the left, from top to bottom, we see some
representative terminals: Cable to cable
screw terminals, PCB mounted screw
terminals, two pieces pluggable type (one
piece is permanently mounted on a PCB, the
other carrying the cables is detachable) and
spring loaded type where instead of using
screws we only have to press inwards a spring

p 104 2.3 Components: Technologies, sizes and where to find them

loaded latching mechanism, insert our cable and release it. The cable
then stays latched.

There are many other kinds of connectors. Really, they look like
never ending, from USB, to power, to waterproof, to board to
board signals connecting, to… you name it. Exploring and assessing
what is the best for each purpose is up to you for the special needs
of a project.

COMPONENTS SHOPPING

Needles to know anything of components and of electronics if you
can never get to hold them in your hands. One way to shop is to go
to a local electronics component store. Yes, I know what you are
thinking, there is probably none. And if you know such a store
getting into it to shop components has two issues. One is the very
limited stock, for example, if you may have chosen the right MCU
of the STMicroelectronics company, that shop may have or may not
have that particular one from the around 2000 MCU products of this
company only. The other issue is that the process of choosing a
component involves studying specifications and parameters.
Datasheet reading is not easy when you are on a shop bench. Such
shopping could be good for some standard connectors, consumables
and tools only.

Thankfully we live in the magic times of e-commerce. Check again
paragraph 1.7, section “Introduction To ICs & Components
Specifications” for that regarding all electronic components
sourcing. Besides components, also about sensors, boards like
Arduinos, tools and other equipment there are two worlds. The
western world where great but not only presence have the
adafruit.com and the spackfun.com and the eastern (Asian) world
where great presence (and not only) have the aliexpress.com and
the ebay.com.

About China vs West:

a) Distance matters: Depending on your country there may be
customs varying in fees and in bureaucracy. Standard mail may
also take long or extremely long. Know that courier shipments
(e.g. DHL) take less than a week to anywhere on earth (South

p 105 2.3 Components: Technologies, sizes and where to find them

Pole is maybe an exception). Shipping fee from many big
Chinese companies is descent. Western companies have better
“free shipping” options if your bill goes over an amount (only to
10£ in Farnell, around 50$ at Mouser) and courier is usually
faster if you live in the western world and usually a little
cheaper.

b) Quality: In some boards, sensors etc you may expect 1%-3%
to reach to you DOA (Dead On Arrival) depending on the
specific product and manufacturer, others will be 100% OK.
You will still be very happy since they are not 3% cheaper but
rather they are >500% cheaper, so just get some spares too.
Regarding components, my personal so far experience in
more than a thousand components (more than a hundred kinds)
produced in China from Chinese manufacturers soldered on
PCBs had not one single defect.

c) Cost: Expect more than 1/5 in sensors and boards if bought
from Asia. About components, you have to see yourself in
lcsc.com. Even components like MCUs from western
manufacturers are really cheaper as you get the price of ordering
1000 pieces in western distributors in ordering just about 10.
Again it has to do with shipping etc. A very important trend in
the last decade is the rise of Chinese semiconductors
manufacturers with descent products at relatively ridiculous
prices. A switching type regulator that outputs 5V 1A for
example may have lowest price of around 0.5$ in western
manufacturers and price of 0.05$ in Chinese manufacturers.
Personally I trust those. You might go to western products only
if you are on big volume production of a product specified as
“cost no object” – “risk 0.0%” only. MCUs are already emerging
with great impact companies like Espressif. Other, especially
with Chinese datasheets and no software “ecosystem”, are not
advised to be considered unless you are terribly hungry for
lowering a product’s cost to about 0.1$ with an extra year of
development. Connectors and such stuff are awesomely cheap
and reliable also. Once again I will state that I am not affiliated
to any company, any country or any politics.

p 106 2.4 PCBs, soldering techniques and equipment

2.4 PCBS, SOLDERING TECHNIQUES AND

EQUIPMENT

Having said about components, it is time to see how to assemble
them. Making electronic devices is an art. It is not “1+1=2”, it is
how good it will look, how robust it will be, how quickly it can be
done and many other virtues that fall on the artwork category
mostly. Let’s see the technology and the basic techniques we have
to know and use.

From the quickest and “dirtiest” to the more difficult and better
performing the most common and not only ways to go are:

1. Connect header to header with DuPont cables
2. Use breadboards (and cables like DuPont)
3. Solder THT components wire to wire, all hanging “on the air”
4. Use a prototyping PCB to solder THD and some SMD

components, connecting them directly as well as with wires
and cables

5. Design a PCB that implements the connections of our circuit,
order it and solder our components on it.

Let’s start by explaining what a PCB is, learn the terminology in
order to speak about it and then visit ways (4) and (5)

PCBS IN DETAILS

Let’s see the most important stuff on a PCB. In this example we have
the most common 2 layer PCB that is a PCB having copper traces
on top and bottom sides. More than 2 layers have internal layers of
connections (copper traces). Complex boards such as PC
motherboards or smartphones PCBs may have up to 10 layers or
even more. In practical electronics, averagely 1 layer is the 10% of
the cases, 2 layers is the 80% of the cases and the other 10% belongs
to 4 layers.

p 107 2.4 PCBs, soldering techniques and equipment

 Top layer Bottom layer

1. The PCB core is made of a composite material. About more
than 98% of PCBs are of FR4 epoxy. It is very hard to bend
and to break. The default thickness is 1.6mm

2. Copper traces or tracks act as wires. Their thickness is
relevant to maximum allowed current and minimum allowed
(parasitic) resistance. Same work is done by “flooded” cooper
all over an area that acts as an ultra-thick track called plane or
polygon fill. Copper is usually 0.035mm thick (35um). Since
copper is very conductive it takes only 0.25mm track thickness
to withstand 1A of current.

3. Pads, SMD or THT. Pads are the places where the pins or
leads (wires) solder. Through hole pads may be plated. Plated
pads are like a well with copper wall. They connect tracks from
one layer to all other layers (e.g. top to bottom).

4. Same functionality, but without a pad, is done by via holes.
They are just plated holes. See in (4) a via hole connecting the
two points the arrows are indicating.

5. Paints are deposited on top and bottom layers. Solder mask
is a protective and insulating coating (usually green) that covers
all tracks except the pads which have to be exposed for

1

2

3

4

5

p 108 2.4 PCBs, soldering techniques and equipment

soldering. Silkscreen puts text, labels and other art on our
PCB (usually white) to provide information.

Let’s now come back to the ways (4) and (5) of our previous list.
(4) is about using general purpose prototyping PCBs, which, like the
breadboards, are a grid of holes, providing a pad for each hole in
order to solder on them THT component’s leads or pins. They are
called Padboards if the pads of each hole are all separated or
Stripboards if they are grouped in stripes. A way to make circuits
on those is like at the following picture:

(Images credited to the “GreatScott!” YouTube channel’s creator)

Components are placed on one (top) side, on the other (bottom)
side they are soldered using their leads or other wires to connect
and excessive solder sometimes, like on the right picture. Harder to
make than using a breadboard but the resulting circuit is more
reliable and robust. About the fifth (and best) way…

DESIGNING AND PRODUCING OUR OWN PCB

Being capable to design our own PCB takes us from moving with a
bicycle to moving around with a jet plane. The approach is
recommended to circuits with over 10 components or to circuits
needed to be made more than twice or to circuits that need to have
at least one SMD component that cannot be connected otherwise.
PCBs are small, robust and have all professional specs big companies
apply to their products. They are also easier and much “happier” to
assemble than any other way, provided we have in our hands our
PCB. This mission has two parts: Designing it and producing it.
Amazingly nowadays both are cheap and fairly quick to do. On
designing, the idea is to use software tools that will assist you in
making the PCB layout that is the geometry of the cooper at each

p 109 2.4 PCBs, soldering techniques and equipment

layer, holes solder masks and silkscreen. Those tools, called EDA
(Electronic Design Automation), provide ways to design your
schematic and then cross over to making the exact connections with
the exact components copper pads and tracks forming a real world
PCB. The way to become a great PCB designer is quick to begin, it
may take a few hours or days for your first simple PCB, but it is
long, it may take up to over 6 months of dedication to declare
yourself as a pro PCB designer. PCBs are the more complex the
more pins that are in the game and that is almost endless in
electronics. But practical electronics are usually in the regime or 20
to 200 components and that is manageable well enough. And that is
about PCB layout, not schematic design or in other words,
electronics design.

There are free to use EDA tools, nice to begin with, like Eagle or
Kikad. Going up, there are many advanced professional tools like
Altium or Pads coming together with a price to pay to become
yours. There are also some online PCB design tools which are free
but may lock you in to a PCB producer or components supplier.
Going from schematic to layout the process is to fill up all the
information for all your schematic components with a “footprint”
that is its geometry (also 3D in some) of the physical component
regarding the pads on the PCB. Next we see a MOSFET that is in a
SOT23 SMD package, on its schematic, its 2D footprint consisting
of copper pads and other mask layers and its 3D footprint.

Having schematic made and footprint libraries done, we place the
components (their footprints) at the most proper place for each (up
to us to decide). Then we go to the process of connecting by drawing
the tracks, called routing. EDA tools provide auto-routing
methods but they usually do not provide as good results as taking
the patience and make them all by hand.

p 110 2.4 PCBs, soldering techniques and equipment

Design considerations to be taken are many, others are electrical like
the resistance of a track, most are manufacturing, regarding whether
a PCB manufacturer can produce that or not. The most important
such “design rules” are the minimum track width and track
clearance, having to do with the feasibility in resolution or detail in
the production of a PCB. They are usually measured in mils (mili-
inch, 1mil=0.001”=0.0254mm). Usual constrains of most PCB
manufacturers are 6mil minimum width / 6mil minimum clearance
for standard cost. They go lower with extra cost, down to about
3mils but that would be rarely needed. Holes size should also not be
less than 0.3mm and finally, the copper around a hole pad should
not be too thin (<6mils) and holes should not be too close to each
other. EDA programs have “design rules” settings to take care of all
those but the designer should be aware to set them up and to take
care for them.

Having our PCB layout done, we need to convert it from
information to reality. In the old days (15 years ago) either we made
it ourselves or we spent a lot of money (200$+) and waited for more
than 10 days to have others make it for us. In this fairytale age we
are living now, prototype PCB manufacturers in China can produce
it for us asking only for about 5$ total for 5 pieces (sizes up to double
a credit card size), one to two days to manufacture and very
reasonable courier shipping costs. Examples of such factories are
PCBWay, JLCPCB and many others. Western world has it factories
also but you have to make a price and delivery time comparison to
see if there is meaning for that. The biggest personal experience I
have is getting about 40 different orders of 20 pieces average (for
each order) of fairly demanding designs of PCBs from PCBWay, all
without one problem and on time. Needless to say that I am not
affiliated to them. You should check at any manufacturer the
technical capabilities he offers and try to fill its automatic quotation
form. This information will make clear your “design rules”. Note
that there is a standard file format for PCBs layouts called “Gerber”
files and “NC drill” files, exported by all EDA tools.

This discussion about PCBs is not intended to make you a PCB
designer, but only to teach you the terminology and where to begin
from if you ever embark to the journey of a project of yours that
needs it.

p 111 2.4 PCBs, soldering techniques and equipment

SOLDERING TECHNIQUES

Soldering is an art. It is achievable to a very great level by most
people. I believe more than 95% of the people can make it to a very
high level and the rest can achieve medium to good level. All you
need is surprisingly, not steady hands, it is good close up vision
(glasses guarantee top level specs on that) and love and eager to
make what you are about to assemble.

We may categorize soldering in two kinds. Soldering THT (through
hole) and big and easy SMD components and soldering SMD fine
pitch components. For the first kind it is estimated that you should
train on real projects for about 1-4 hours to feel like you go for it.
The other kind is twice as hard and may cost a few burned
components also.

A picture is 1000 words they say. How about 16000 pictures, one
after another, in a 11’08” video? Soldering contains motion also, so
let’s not do it with words, nor with pictures, open your YouTube
and search for

great scott solder

click on the video titled:

“How to Solder properly || Through-hole (THT) &
Surface-mount (SMD)”

and enjoy those 16000 frames.

Videos are the way to learn about soldering. Count those 12 minutes
in the time of reading this book. In the spirit of this book, that was
the introduction, there is way more to go, learning and
experiencing.

Companies like PCBWay offer also PCB Assembly services
(PCBA). Having seen on this video how the solder paste works,
imagine applying the solder paste only on the pads with one move
using a stencil and a spatula and then using robots that do automatic
placement of components (automatic pick and place machines). This
is about mass manufacturing. Nowadays many companies offer very
low prices for automatic assembly of your boards by such precise
machines, even for low count of boards e.g. 10 pieces only. Cost
may be around 100-300$ fixed fee plus about 3$ per board of
around 100 components each. That makes you an electronic product

p 112 2.4 PCBs, soldering techniques and equipment

manufacturer who owns no fabrication facilities (fabless) and that is
really an awesome potential. Special information for those
automated machines (pick & place files) as well as detailed bill of
materials (BOM) is generated by EDA tools. Design and soldering
experience is needed to do this though, your first projects should
better be assembled by yourself.

EQUIPMENT BUDGET

Back in 80’s and 90’s a well-equipped electronics lab for developing
or just playing with MCUs or CPUs costed well over 5000$.
Nowadays we live in heaven, the same professional level
functionality in equipment that includes measuring instruments,
tools and programming/debugging equipment may cost less than
200$ provided you have a PC, desktop or laptop. We may
categorize the cost of an electronics laboratory in four levels. The
spectrum is continuous, you will not step from one to another such
subjective level but be anywhere in between.

Level 1: Low-end but well-chosen equipment in tools and
instruments may cost less than 100$. Some simple enough Arduino
projects may need no equipment at all, just the components, the
Arduino, the PC and a few DuPont cables.

Level 2: Medium, 95%-99% functional for developing anything
with Arduinos and MCUs in custom PCBs may cost around 500$!

Level 3: Very good, >99% functional for easy prototype assembly
or repairing of any small SMD size components costing around
1500$

Level 4: High-end equipment covering a missing <1% (such as high
frequency, ultra-high accuracy instruments) if ever needed in
projects involved) costing in the region of 5k$ to 100k$.

A laboratory for the sake of practicality, should also be equipped
with a stock of common use components and consumables (some of
those purchased for the sole purpose to play with them once for
acquiring experience, knowledge, curiosity satisfaction) over at
least the half of the equipment cost.

So, it’s an “anyone can make” job.

p 113 2.4 PCBs, soldering techniques and equipment

MOST IMPORTANT EQUIPMENT –

MEASURING INSTRUMENTS NOT INCLUDED:

A shorted by priority list follows to all you need in your lab, leaving
out the measuring and debugging instruments (ultimately
important) we will talk about in chapter 2.7. Do not take all that
follows by word, prioritizing is subjective and mostly refers to
where to put more money in case the budget is very constrained. It
is not about having only the first ones and nothing of the ones
following. Budget is mostly referred to getting things from China or
Ebay.com.

1. Soldering station: A temperature controlled soldering iron with
a variety of soldering tips. In choosing such, the 90% of the
weight in the decision factors is what variety and quality of tips

it will have. 90% of the soldering is done with the iron
tip, the rest are nice ergonomics in handling and such
stuff. Hakko 900M compatible soldering iron “pens”
and tips are a recommendation. Have in mind that it
is better to solder almost anything using flat,
screwdriver-like tips of 2-3 sizes, from ultra-small to

quite big. Keep also in mind that different tips make different
temperature at their end point, so do not believe the
temperature your station is set to have. Higher temperature than
required wears off your tip sooner and most importantly, may
damage your components like ICs and transistors. For low

budget take into
consideration some

“pen-only” with all electronics integrated. For stations a turning
knob has more usability than up-down buttons provided it is not

a too cheap device. Stainless steel sponge is great for
cleaning the tip using some vessel to contain the
dangerous to your health solder dust, especially of
leaded solder (we will see about solder wire next).

Budget: Level 1: 10-40, Level 2+: >60$
2. You have to have great close-up eyesight (presbyopia with no

glasses is very bad, myopia is a bliss). If not use glasses only for
electronics as to achieve close-up eyesight at 100%. Regardless
eyesight performance, in order to see smaller objects (also like
bad soldering) magnifying glasses like the ones on the left are

p 114 2.4 PCBs, soldering techniques and equipment

recommended (with lenses shape as seen in
the photo) with strong but not too strong
magnification. “Sherlock Holmes” style
magnifying glasses, if used instead of wearable

glasses, should be small and “sort focus”, the bigger diameter
they have, the less they magnify! Any magnifying glass should not
be used for prolonged times. Budget: 4-30. For Level 3
consider a 3D optical microscope with the lowest possible
magnification + greatest distance from objects viewed. Camera
& screen approach is not recommended.

3. Cutters: Have two at least, a fine and a bigger, with as good
quality as possible. Stripping cable ends easily
with your cutter is what makes quality pay off.
The fine cutter should have the form of the one on
the left. Obey the maximum diameter of wires

written on its handles always and never drop it from your desk.
If you cut anything harder or you drop it with its tip hitting the
floor go for another one, so have at least one backup. Big cutters
of Knipex German brand are recommended if you can put
another 30$ there. Budget: Level 1: 5$ Level 2+: >20$

4. Tweezers: You cannot handle any SMD component with your
fingers. Using SMD turns you into
an alien creature with one hand of

two metal fingers that is your metallic tweezer. You should
allocate some budget to it for top quality, like titanium or other
super metals. Also have more than one and more than one size
(at least a thick for harder jobs and a very fine – thus sensitive –
for SMDs). Budget: Level 1:>5$, Level 2+: >30$

5. Pliers , blade cutters and other general purpose tools (many you
may have already)

6. Screwdrivers: Silly to talk about those but have in mind that
having 2-4 most common sizes of very good quality like the
French Facom brand pay off, mostly in pleasure. My guess is that
you already have screwdrivers.

7. ESD protection: ESD stands for Electro-Static Discharge. This is
about tiny sparks we do with our hands when we touch objects
while our cloths have accumulated (static) electric charges. The

p 115 2.4 PCBs, soldering techniques and equipment

voltage produced that way is awesomely high, over
3000V! The current is just tiny. This damages in
permanent failure many ICs and some MOSFETs.

But how often does it occur? It depends a lot on environmental
conditions like humidity and varies in severity from place to
place (e.g. may be very rare in Greece where I live and have done
no such damage yet, it may be more dangerous to dry places like
USA Texas). Generally it is a precaution that even if it is not
taken, most of the times no problem occurs. The way to protect
from static electricity is to have electric conduct of both
ourselves and the components we handle to the same voltage,
the ground (here the term ground refers literally to the ground
of the earth). Packaging with material of a very little conductivity
(ESD safe bags) is also helping on this a lot by sort circuiting all
IC’s pins to the same voltage. To be ESD safe we need to connect
our conductive human body to the same voltage with our bench
and instruments. The main equipment is an ESD mat on our
bench to work on (costing from 6$) and an ESD bracelet (costing
from 1$) that we have to wear always in our hand. Both have a
cable (some cordless ones are probably just scam) that we should
connect with each other and with the electric grid’s ground or
earth point. Choose the most “rigid” pad you can find.

8. Hot air rework station: They are the only means of de-soldering
SMD chips, and soldering many kinds like
QFNs and many other SMD packages,
including almost all quick works using solder
paste. So it is an SMDs must have. Many
come with a soldering iron also. Do not
choose some old technology of those with an
air pump inside the base station box. Newer
ones contain a blower inside their hot air gun

that connects to the station with a cable only (not an air hose).
They are quieter and have better flow control. Using such a tool
requires some YouTubing to learn the skills. Notice that the
temperature of the air depends a lot to the distance your nozzle
is and the air flow rate, so the air temperature setting is to be
taken in very little consideration, burning your ICs by
overheating will be your constant fear on this job. (Image is

p 116 2.4 PCBs, soldering techniques and equipment

credited to Yarboly Authorize Specialty Store in Aliexpress.com) Budget:
Level 1: 20-30$, Level 2+: >40$

9. Cable stripper: There are many kinds. Most cable-end stripping,
in practice is done with your good cutter.

Budget: 5$ -30$
10. Hot glue gun: For any ad-hoc mounting especially for wires.

Take care not to apply hot glue on operating ICs since it is hot
enough (>150oC) to damage them. Is OK for powered off
electronics. If you burn your hands toothpaste is a great relief.

11. Hot plate: Hot plates provide a surface with fine temperature
control (practically from 100oC to 300oC) that heats your board
at its bottom. They alone or with help from hot air from above
can melt the solder of SMD parts either for soldering or for de-
soldering. A very great asset for QFN chips. Older type IR
heating “pre-heater” devices do not perform as well.
Recommended for level 2+ of equipment, costing from 100$ to
300$ where the highest portion of the cost is the shipping due to
their size.

12. Reflow oven: A small oven where you place your board with
the SMD components and solder paste in order to melt the solder
paste properly and deliver your board with all parts soldered. It
achieves “temperature profiling” that is rising the temperature by
specific rates and holding it to specific points for programmed
time periods according to what solder paste likes most for
soldering well. Cost begins at around 300$ and it is at level 3 of
our budget categories.

MOST IMPORTANT CONSUMABLES:

Here is a list of what should be always within the reach of your
hands, again sorted according to importance:

1. DuPont cables: Form all four kinds, more than 50 of each,
especially of female to female and female to male. Take care to
have as thick core as possible (less AWG). Cost: around 5$ at
least.

p 117 2.4 PCBs, soldering techniques and equipment

2. Solder wire: It looks like a trivial thing but its quality is the
most important factor in soldering! First of all,
there are two kinds: Lead-free and leaded.
Leaded is the oldest and cheaper, it comprises
of lead (Pb) at about 40% and the rest 60% is

tin (Sn). It melts at 188oC (370oF) that is much lower than lead-
free. Generally it is “worked” better than the lead-free BUT it
is not healthy. Lead is not good to come in conduct with your
skin for prolonged times. Lead-free is the healthy solution to
you composed of various combinations of tin, copper, silver
and antimony, but with a higher melting point, 217°C (422°F),
it is more dangerous to burn some components if care is not
taken. The metal alloy itself, of both kinds, when melting,
takes a plastering form and is hard to be deposited or to join
with the pins, wires or pads we are soldering. There is a second
ingredient needed to solder, the flux. Flux makes the melted
solder flow non-viscously, like a drop of water, makes the
joining to the soldered metals (copper etc.) a lot easier and
forms a coating around the finished soldering that prevents
from oxidization. The flux is contained inside the solder wire.
Flux makes the smoke while solder is melt. Its fumes, especially
if it is from natural rosin are harmful to asthmatic people at
least. Yea… natural products are not good for your health.
Generally fumes are not toxic but you should not inhale them
a lot. Use a very low speed current of air flowing horizontally
above the board that you solder (with a small fan located in
some distance, air flow has to be small otherwise it will cool
down your soldering iron a lot) in order to take the fumes away
from your face (that is usually right above) and some
ventilation, or professional air sucking equipment if you are in
production of electronic boards. Flux also leaves a residue
around your soldering that absorbs humidity and becomes
conductive after a few months making the most terrible sort
circuits since they will one day come out of nowhere. There
are two flux categories, no-clean and others, usually
unspecified and cheap. Amazingly no-clean is clean!! They set
that confusing name to inform that it does not require cleaning
after soldering, it will not form parasitic resistances after time.

p 118 2.4 PCBs, soldering techniques and equipment

Another specification for our solder wire is how much flux it
contains. We need to have lots of no-clean flux (the most
possible actually) that is in around 3% concentration. That
makes all soldering much more easy to do. You will find great
info and great products in kester.com web site. A last thing is
about the diameter of the solder. 0.5mm diameter is fine for
all THTs and all, even the smallest SMDs. Prepare to spend
around 50$ for a well selected roll of 0.5Kg of solder wire that
will serve you for some years of working on electronics. Avoid
solder wires of wrong diameter, without no-clean flux or
without detailed specifications.

3. Spare cables of various diameters, from very thin to about
1.5mm copper diamter. Especially it is recommended to have
some rolls or long pieces of different color, with wire (core)
diameter around 24AWG (equal to 0.22mm2) and some ultra-
thin. Single core (solid copper wire) breaks if bent many times,
prefer “multi-core”. Cost here may be around 5$ at least. In
worst case strip-off some network cable.

4. Spare components of various kinds such as: LEDs (more than

10), THT resistors, more than 50 (too cheap) of each of 1Ω,

10Ω, 100 Ω, 1K, 10K, 100K, THT capacitors, more than 50
of 100nF, 10uF, some of 10pF and some bigger electrolytic.
The more kinds and quantity you have, the better. Cost may be
as low as 5$ but around 20$+ is recommended. If you are to
design and make SMDs circuits, SMD assortment kits of
resistors and capacitors are a must. Recommended are ones
containing more than 50 values at 50 pieces from each at least,
organized (assorted) per value. You should need 0805, 0603
sizes at least. For levels 1 and 2 you may get such kits starting
at 3$ in Ebay each, for level 3+ consider some nice practical
booklets and assortment kits of lots of component kinds. When
you need to experiment with something, you cannot go
shopping and wait some days e.g. for your slightly bigger
resistor to arrive.

5. Breadboards and prototype boards. Allocate more than 5$ for
those.

6. No-clean rework flux: Extra flux in a practical syringe
dispenser, essential for SMD ICs soldering and unsoldering. A

p 119 2.4 PCBs, soldering techniques and equipment

must for working with SMDs! 5mls of volume should do your
job for around 100 chips.
Old school electronics guys
used a small tin of flux to dip

their iron tip inside. No, this is pointless added to the fact that
such fluxes have terrible quality and are not “no-clean”.
“Rework” kind of flux means it stays there for longer time while
heat is applied, in contrast to water based fluxes. Costs around
10$.

7. Flux removal solvent: Even no-clean flux has to be removed
since it is annoyingly sticky and it does not allow for good
optical inspection of our soldering. Either use special sprays
labeled for this purpose or use isopropyl alcohol. Any of those
is a must have on your bench. Remove the majority of the flux
while diluted to the solvent with a paper towel or better with
expendable micro-fiber cloths. The later do not leave any
annoying paper fibers behind. In some cases, re-apply new
solvent and use a toothbrush assigned for that purpose to make
your flux-covered area ultra-clean (provided your toothbrush
is kept relatively clean also). Use ventilation in your space.
Cost starts around 4$, beware of shipping of chemicals issues
and cost from abroad.

8. Solder removal wick: A special copper cable with embedded
flux (make your own if you don’t own it)
that sucks all solder from a solder joint
when heated up on it with a soldering iron
(high temperature does better job). Cost
starts from 1$

9. Adhesive tapes: Plastic insulating tape for providing proper
electrical insulation to bare wires, paper tape for easy closing
of components bags and for mounting things in a cleaner way,
does not leave glue behind when removed. “Capton” heat
resistant tape that withstands even the temperature of your hot
air and leaves no glue behind also. Cost from 1$ to 10$

10. Heat shrinking tubes and wire ties for greater look of cabling
work. Cost from 4$

11. Solder paste, definitely no-clean flux. Though you can live
without paste even for the finest SMDs. Its place is in your

p 120 2.4 PCBs, soldering techniques and equipment

refrigerator, safely out of reach of children or people with
limited cognition. Costing around 20$ in practical syringe
dispensers.

12. Last but not least: “Consumable” devices. Even they are not
consumables in nature, it is not bad to have an in-house
collection of a few Arduinos of various kinds, and a few sensors
and peripheral boards in general of various kinds that are big
candidates to be used sometime like temperature sensors, relay
boards etc. Since your Arduino may be damaged quite easily
from mistakes, at least one more should be awaiting “on the
bench” to come into the game when needed.

RECOMMENDED LAB LAYOUT

Since hardware with no software is now rare and since hardware
itself is designed in computers and last, since all knowledge is either
in .pdf format or is “googled” you cannot create electronics nor
repair them away from a PC. So a desktop PC or a laptop (not a
tablet) should be no further than 1 meter from the place all your
tools and instruments are. Note that if you take this a little seriously,
a PC having at least two monitors for efficient designing and
software development should be there. Fortunately a good bench /
desk with all level 2 or 3 of equipment on it and sufficient working
area can be as sort as 1 to 1.5meters in length + the space for the
computer.

p 121 2.5 Further “must-have” knowledge on passive components and signals

2.5 FURTHER “MUST-HAVE” KNOWLEDGE ON

PASSIVE COMPONENTS AND SIGNALS

Previous two chapters were easy to read, just describing physical –
hand grasping objects. Electronics, like it or not, are based on

science (), that is physics with the assistance of a few
mathematics. This and the next two chapters will be hard core
electronics deeper concepts, all 100% practical and useful every
day. In this chapter we will dig in to how diodes and capacitors
behave and gain some background to understand important
information in most component’s datasheets.

FUNCTIONS, LINEAR AND LOG PLOTTING

Skip this paragraph if you know by the title what those are. But for
anyone who is not on mathematics or on engineering, let’s not leave
any gap behind since understanding and knowing are two
completely different things.

Most of the practical mathematics are functions. Simplest
functions (the 99% of the ones we meet) are “machines” which take
an input of one value (that is a variable) and output something
depending only on how much that input variable is. For example a
function may be the f(x) = 2*x that has x for its input variable. Feed
it with 10 it will output 20 always, every day, no matter the
weather. We understand a function’s “functionality” as a picture by

drawing a plot on two
axis, the horizontal is
any input value range
we are interested
about, the vertical is
the result of each of
those. Surely you see
many such plots in

your ordinary lives, usually having for input variable the time and
for output a measurement or the predicted value of something, that
easily displays if something is ascending or descending. We may call

p 122 2.5 Further “must-have” knowledge on passive components and signals

a function “something” vs “something else” e.g. Apple’s stock
value vs time (always output versus input).

Notice the numbers on the two axes in the previous diagram. Those
are linear axes, increasing their values by the same rate throughout
their length. If we choose some length e.g. 1cm in our paper, X’s
value increases by something, say for example by 3.2 units. Taken
that 1cm at any point of the axis we see the same increment (3.2
units) no matter how left or right we are.

Sometimes in engineering we need to display very small and very
big changes all together. We have logarithmic or log axes for that.
Unfortunately they work for positive values only and they cannot
include the zero value. They “zoom in” in great detail the closer to
zero we are that is, the more left or down we are and they “zoom
out” to big numbers the more right or up we are. Here is one:

Spanning from 1 to 60000. Its linear counterpart is:

The thinner lines of our log axis are values: 1,2,3,4,5,6,7,8,9,
(10),20,30,40,50,…,(100),200,300,… while on the linear axis
they are: 0, 2000,4000,6000,8000,(10000),12000,… Compare
the 1-100 area of the logarithmic to that of the linear. Log axes have
the mathematical magic that if we do what we did our previous
linear axis with the 1cm area moving it left or right, we see that in
any place we set it the value increases by the same multiple, e.g. it
increases by 4x! (Easy to see that on the 10x increment). Let’s
remind again that zeroes counting on numbers is easily displayed as

powers of 10 (orders of magnitude in physics slang)
as in the matrix on the left. It is very usual to see log
axes spanning e.g. from 10-6 to 102. All are positive
numbers, not containing the zero. Enough of
mathematics tools, lets jump to the real resistors
and diodes behavior.

10-3 0.001

10-2 0.01

10-1 0.1

100 1

101 10

102 100

103 1000

p 123 2.5 Further “must-have” knowledge on passive components and signals

RESISTORS

Let’s plot the current flowing versus the voltage applied on a
resistor. Note once more, that voltage is usually what is set on a
component or a sub-circuit and current is the result of its behavior.
Available are voltage sources in the most of the cases. Current
sources (making current have a specific / set value) exist as well but
we will see those only in transistors, operational amplifiers and in
very few more cases, all considered quite rare and tricky. So, having
voltage as our input variable, Ohms low is I = V/R (higher
resistance, less current, higher voltage, more current). Plotting on

the left 0.1Ω, 1Ω, 2Ω and 10Ω
all on the same diagram as to
have immediate comparison,
we see that the less the
resistance the steeper is the
slope of the line, the more it is
the less is the slope. Let’s start
from the plot of 1Ω. Two
Volts make 2Amps, 10V make
10A etc.., going higher in
resistance, 10V will make less
and less Amps up to the point

of reaching infinite resistance were 10V and any other (input)
voltage results in 0A, that is a horizontal line coinciding with the V
axis. Infinite resistance is the open circuit. Likewise, zero resistance
that is the sort circuit (with an ideal wire drawn on our schematics)
makes an I vs V diagram of a line on the vertical (I) axis. In that case,
any, however small voltage will produce infinite current. Don’t
start to do much philosophy on that, there are no real 0Ω resistors
as we previously show how much the parasitic resistance of copper
wires is. Moreover we show that all voltage sources have some
internal resistance, but rising current too high usually results in
circuit death with or without smoke.

p 124 2.5 Further “must-have” knowledge on passive components and signals

DIODES

Let’s apply voltage of various values, positive and
negative (reverse polarity than that shown) on a
diode, assuming it behaves ideally.

Such an ideal diode should behave as shown on the
diagram on the left. Open circuit on
negative voltage applied (called
reverse voltage), ideal sort circuit
(zero resistance) to any positive
voltage applied (called forward
voltage), behaving like an ideal wire.
Unfortunately real world
components are not there yet. Real
diodes have many performance

limitations, the main of those are:

Maximum current they can handle (on positive voltages, or
“forward biased”), a little leakage current on reverse voltages
(behaving like resistors of some MΩ value), maximum reverse
voltage they can handle and as we will see next, a “forward voltage
drop”. Here are the real I vs V diagrams of some real diodes, SS14
and some others “Schottky” type and 1N400x (x is 1 to 7) classic
diodes (or silicon rectifiers kind), both handling up to 1Amp
current.

1A diodes are medium in size, smallest are around 200mA
maximum current, biggest practical are around 5A. Diagrams above
show current over 1A that they can handle only on sort durations.
Note the logarithmic vertical axis. Now notice the main difference
between the real and the ideal diodes. Instead of “turning on” at 0V
or at 0.000001V they start to act like a sort circuit after a voltage
called VF or VFORWARD. If current of 200mA flows on the circuit on

p 125 2.5 Further “must-have” knowledge on passive components and signals

the left, SS14 will need around 0.32V to “turn on”, SS15, around
0.52V and 1N4007 around 0.83V. That voltage will be the voltage
the diode has across its pins when such current is flowing through it.
So, in our circuit on the left, if we have an ideal diode for D, the
voltage source equal to 5V, the resistor equal to 25 Ohms, voltage
across D should be 0V, voltage across the resistor should be 5V-0V
= 5V and the current should be I = V/R = 5/25 = 0.2A. Having
the 1N4007 for the diode, current should be again around 200mA
(a little less as we will see but that is not significant) but the voltage
across the D now should be around 0.8V, so the voltage across R
should be 5V-0.8V = 4.2V ! So a Diode makes a voltage drop,
depending on its specs (which one it is) and on the current that flows
through it. Of course that is not wanted. Diodes of “Schottky” type
are the best at this with a tradeoff of more leakage current in reverse
voltages. Also note that many <200mA applications are covered
well with the most classic diode (silicon rectifier kind), 1N4148.
You should always choose a diode easy to find on the market since
there are a lot to choose from for any set of specifications.
Octotpart.com and other alike sites help on availability check and
that goes for all components selection. Let’s now visit some very
fancy diodes, Led Emitting Diodes.

LEDS

The more current flows through an LED the more light it emits.
That is for most cases proportional, double current make double
(not triple) light. Current and thus light output have an upper limit,
for most LEDs purposed for indication of something (rather than
lighting the surrounding environment) it usually is 20mA. So, 20mA
gives maximum light, 10mA gives 50%, 1mA gives 5%, 0mA gives
zero.

Let’s see the forward voltage drop of some typical LEDs, a red and
a blue one. Notice though that each part number of an LED has its
own such diagrams in its datasheet which may differ.

p 126 2.5 Further “must-have” knowledge on passive components and signals

Notice that this drop is a lot bigger than the diodes have and
therefore it plays a more important parameter in designing. We will
come to that next with a designing example.

Other parameters important to LEDs are: Color (it may also be
referred as wavelength in nanometers), luminous intensity
expressed in milicandelas (mcd), 100mcd is a bright enough to feel
it too bright when we stare at it (a very bright one is power
economical since we achieve the light level needed with less
current), its maximum forward current and its overall shape and
lens if any.

Let’s design… In the circuit on the left assume we have a blue LED
and we require it to shine with its maximum
intensity. What resistor should we choose?
Assume the LED has max forward current of
20mA. We should go with 15mA to be sure
there is always enough margin. When the
current of the LED is equal to 15mA, the
voltage across its pins is around 3.3V
according to it’s I/V diagram. Assuming the
GPIO output of the MCU works ideally (like

a switch, no in series resistance) when it is set to “high” state it will
be connected to Vcc that is 5V. So R will have 5V on its one pin and
3.3V on the other, making the voltage across it 5V - 3.3V = 1.7V.
Of the 3 elements of Ohm’s law we have voltage and current, so
resistance is R=V/I = 1.7V/0.015A = 113Ω. Taking into account
that the GPIO sub-circuit may have around 30Ω in series resistance
(parasitic) we may either chose an 82Ω since a margin is already left
or play safer with an100Ω. We should not care about how many

RED

BLUE

p 127 2.5 Further “must-have” knowledge on passive components and signals

Watts the resistor is since the power dissipated is
V*I=1.7*0.015=0.025W

Note that this is near the limit a GPIO pin can source, for higher
current the help of a MOSFET should be needed. Without a resistor
in series to an LED, in the red one for example, 1.8V makes it shine
the most, 1.7V makes it shine to half and 1.85V takes it out of its
operating range. That’s why an in series resistor is always needed.
With an in series resistor we are very tolerant on both its value and
most importantly on the voltage we apply. In our previous example,
raising 5V to 5.5V should make the LED current rise by about 3mA.

CALCULATIONS ON CAPACITORS

AND BATTERIES

In Chapter 1.4 we pictured the capacitors as “charge reservoirs” like
the gas reservoir of a car. Let’s introduce how to make the most
basic calculations about “how much” millage such reservoir provides
as to pick the right capacitor for our jobs. But before that, let’s talk
about such calculations on batteries.

A Battery’s front-end specifications are its nominal voltage and its
capacity in Ampere-Hours. The Ampere-hour (AH) unit is actually
the product of current x time (in units A and hours) that remains
constant and is a measure of the amount of the energy that can be
provided in total before our battery depletes. One AA alkaline
battery that is 1.5V, 2AH can provide 1A for 2 hours (current x time
= 2AH) or 0.1A for 20 hours (our product is still the same) or
200uA for about one year or… That’s the concept of the capacity of
a battery. Note that in the real world we cannot have in our AA
battery 10A for 0.1H for example, when the current goes very high
our AH product drops.

A capacitor is similar to that, but is almost ideal in providing high
current and recharging trillions of times without wearing off. The
measure of its “gasoline tank” volume is not measured in AH. The
measure of capacitors’ capacity itself (Farad units) is defined as: One
Farad is 1 Coulomb of charge stored inside our capacitor (remember

current is 𝐼(𝐴𝑚𝑝𝑒𝑟𝑒𝑠) =
𝑄(𝐶𝑜𝑢𝑙𝑜𝑚𝑏𝑠)

𝑡(𝑠𝑒𝑐)
) for 1 Volt of voltage applied

across our capacitor’s pins. If 1V is applied on our capacitor, electric

p 128 2.5 Further “must-have” knowledge on passive components and signals

charge is stored inside it, the more that charge is, the bigger the
capacity. For 1V if the stored charge is 1 Coulomb, our cap is 1
Farad. Doubling voltage doubles the charge, e.g. in our 1F
capacitor, 5V will make it contain 5 Coulombs charge. At
discharging our 1F cap, if 1 Coulomb flows out, its voltage will drop
by 1V (e.g. in the previous case, its voltage will drop from 5V to
4V). That 1 Coulomb, flowing out in our circuit, will provide 1A
for 1 second or 1mA for 1000sec or… any constant current x time
product (in A x sec this time, we may call this Ampere-seconds like
AH) but for dropping by 1V, not for depleting. A 1uF capacitor
(0.000001F) has 1uA-secs for dropping by 1V. It can so provide 1A
for 1usec for dropping 1V or 0.01A for 1usec for dropping only by
0.01V or 0.01A for 10usec for dropping 0.1V or…. You name it by
keeping the current x time product equal to its capacity x
voltage dropping product. Same applies for charging the
capacitor, voltage then rises by the same amount.

It = CΔV or ΔV =
𝐼𝑡

𝐶

In our real world of components, the maximum current a capacitor
can provide (or be provided) depends only on the ESR, the
Equivalent Series Resistance we mentioned in 2.3 that every
capacitor has. Ceramic capacitors (usual capacitors below 10uF)
have very few mΩ, so the current they may provide can be huge
(though very sort lasting, in the region of nsecs only). ESR is a
concern for electrolytic caps as we already discussed (going up to a
few Ohms), in general the smaller the capacity, the smaller is the
ESR.

Digital ICs consume current every time they change a state in them.
That consumption is in spikes of sort timed pulses (with duration of
around 1nsec). Placing a capacitor near them (usually a 100nF) can
serve that high current demand in those sort durations. 100nF may
provide a pulse of 1A for 1nsec having only 10mV voltage drop.
Same concept applies to batteries, especially the very small sized,
power supplies connected over long wires etc. where a near-by
capacitor supplies all sort-term current demands keeping the supply
voltage stable enough.

p 129 2.5 Further “must-have” knowledge on passive components and signals

MORE ON SIGNALS

Hereafter in our diagrams and concepts we introduce time. This will
introduce other great concepts such as frequency. We will also get
used to the fast time ticking of electronics, where 1milisecond
sometimes is like an eternity. On chapter 2.7 we will see how we
actually see those graphs on our oscilloscope’s screen.

Square wave:

Let’s use an MCU GPIO set as output and write a program like:

void loop()

{

 digitalWrite(GPIOnumb,1);

 delay(50);

 digitalWrite(GPIOnumb,0);

delay(50);

}

The GPIO, provided the MCU is supplied by 3.3V for Vcc, will start
changing over time as in the following time-axis diagram:

Diagrams where the input variable (horizontal axis) is time show
how something evolves – changes. You may meet the term
“transient response” for this.

Our diagram or graph shows a periodic change. That horizontal-
vertical-horizontal-vertical periodic signal is called square signal or
square waveform (or square wave). Some very important
terminology on this follows:

Period: the time duration (in seconds) of the periodic
phenomenon (one cycle). In our case it is 0.1sec (not 0.05!). Also
note that one period is also the time from 0.02 to 0.12sec or any
other 0.1 sec interval.

Frequency: How many periods (cycles) occur every passing

second. Yes, it is the reciprocal of period, f =
1

𝑝𝑒𝑟𝑖𝑜𝑑
 measured in

p 130 2.5 Further “must-have” knowledge on passive components and signals

units
1

𝑠𝑒𝑐
 or same thing written in another way, sec-1 or (same thing)

Hertz or Hz after Mr. Hertz a pioneer in radio waves around 1880.
In our example it is 10Hz.

Peak to peak amplitude: The difference from top to bottom in
the vertical axis. In our diagram it is voltage and is 3.3Vp-p.

Amplitude: This is confusing. It is the half of the peak to peak
amplitude. In our case it is 1.65V.

Duty cycle: Only in square waveform: The ratio (%) of time that
is high to the time of one period, in our case it has been 50%. On

the diagram on the left it is
10% (yes that is a square
wave too). Adjusting the
duty cycle of a square signal
is a process called Pulse
Width Modulation or

PWM. The average value of a square wave that is zero when low
equals to its peak (high level) value by the duty cycle ratio. In our
case of 10% duty cycle signal of 3.3Vp-p it is the 10% of 3.3V =

0.33V. That way if the frequency is high enough as not to be able to
notice the turning on-off phenomenon with our eyes or ears
(imagine a light turning on and off at 1KHz), adjusting the duty cycle
actually adjusts the level of something, e.g. how bright an LED
shines.

Other waveforms:

There are other waveforms like sinusoidal, triangular, saw tooth
shape etc. up to any shape as long as the signal is periodic. Special

place have the sinusoidal signals
(left) like the voltage of the power
grid, but it takes almost a book to
speak about those as all signals can
actually be composed by sinusoidal

signals. Non periodic signals are very usual also, like the sound signal
of a song or a man narrating this book (only the sound signal of a
tone is periodic).

Frequency response:

p 131 2.5 Further “must-have” knowledge on passive components and signals

This is a complex matter (involving also numbers mathematically
called complex!) for which we will not give an in-depth analysis,
just a quick visit since it is in all places in analog electronics design.

The subject of frequency response is how
much a signal is amplified versus its
frequency only of sinusoidal input signal.
The diagram therefor has frequency in its
horizontal axis (actually sinusoidal
frequency). A magic of sinusoids is that the

output will also be a
sinusoid all times (it will not
distort its shape). As an
example let’s apply 1V
amplitude sinusoidal signal
to the circuit on the left by

the V2 signal source at various frequencies and measure the
amplitude on the “VC” point. In frequency response diagrams you
will usually see both axes in logarithmic scale. The vertical axis may
be in a confusing unit called decibel (or db). If ever you need
decibels calculations check Wikipedia or google on this, we try to
keep this subject in its very basics here. What we see in the previous
diagram is that in high frequencies signal attenuates, falling to half at
6KHz and after that dropping proportionally to the frequency. This
circuit allows frequencies up to 3.4KHz to pass through it
attenuating less than 30% (or -3db), we say it has a bandwidth of
3.4KHz and is a low-pass filter. There is a bandwidth limit in all
electronics, most amplifiers end up at a few MHz, and average cost
oscilloscope instruments end up at around 100MHz. You may get
used to the frequency response idea by tickling an audio equalizer
(e.g. an app in your smartphone of such functionality) to feel what
it is to adjust the frequency response of a signal, the audible sound
in that case. If we need a square wave signal to pass through such a
low-pass filter, its bandwidth (sinusoidal frequencies) should be at
least 6x of the highest square signal frequency we need to pass
through in order to conserve its rising and falling edges steep
enough.

Impedance:

p 132 2.5 Further “must-have” knowledge on passive components and signals

Why did the previous circuit attenuate a signal more the more the
frequency it has? Our capacitor charges and discharges at the
frequency of the signal. The smallest the signal period is, the

smallest is the ΔV =
𝐼𝑡

𝐶
 across its pins since it does not have

enough time to charge or discharge. It behaves, kind of, like a
resistor that is smaller the higher the frequency is. That
frequency depending resistance-like effect is called impedance,
also measured in Ohms. We will see that term in capacitors
and coils. In capacitors it is disproportional to the frequency
and proportional to the capacity, in coils it is the opposite. All
those said in some simplicity since “complex” numbers
mathematics are required to make accurate calculations there.

p 133 2.6 Active components and ICs: Regulators and other useful

2.6 ACTIVE COMPONENTS AND ICS:

REGULATORS AND OTHER USEFUL

In this chapter we will learn more about active components in terms
of electrical functionality. This will be the final chapter of
components excluding MCUs. Comparing (in fantastic terms) a
circuit to a human, MCU is the brain and all the other cells and
organs are the components. Only a brain cannot be sustained in life
and if so, it cannot do much itself without the rest of the body’s
organs (components). We will see the very practical ones. Yes, they
are a lot more functional and exciting than resistors, capacitors and
LEDs.

 LINEAR REGULATORS (AND LDOS)

Having said the most about linear regulators in chapter 1.7, it is
worthy to repeat some and mention a few more since regulators
power almost all electronic circuits. Let’s use another one in our

tutorial, the MCP1700T-3302E/TT from Microchip
Technology. That’s in a nice tiny SOT-23 SMD
package offering very low current to operate itself
(Quiescent current), very low voltage dropout
making it definitely a Low Voltage Dropout – LDO
regulator and low cost. When we meet a new
component the first thing we should always

do is to download and open its datasheet! As said again,
digikey.com is a great fast way to do that or any other distributor’s

site that suits you. On the circuit on
the left we see again the full circuit
required, the same in 99% of all
linear fixed output regulators. This
one outputs 3.3V fixed Vout. The
input (Vin) voltage required is from

3.5V to 6V. How much higher the input voltage has to be than the
output is the dropout voltage and in this one it is around 200mV
only (an LDO). Let’s see what to take care about in the process of
choosing a linear regulator and the traps that are difficult to spot in
a datasheet or the front-end specs.

p 134 2.6 Active components and ICs: Regulators and other useful

1. Maximum output current: Here is the biggest trap of all.
This specific datasheet for example clams to provide
250mA. Never trust this specification since it is specific to
conditions that may not be met in your application. Linear
regulators behave like resistors! Adjusting their resistance

automatically as to
provide the fixed output
voltage to their load.
That resistance is a
controlled “activation”

of an internal power transistor. If in an instant I = 200mA
that resistor should be R=V/I = (5-3.3)/0.2 = 8.5Ω.

Regardless its value, the thermal power it dissipates is VI

= (Vout - Vin)  I = (5 - 3.3) * 0.2 = 0.34Watts. Will it
“take that heat”? To answer that there is a specification
called Thermal Resistance (junction to ambient) in oC/W
that is how many Celsius the temperature will rise from the
environment’s temperature per thermal Watt dissipated. In
our case it is 212 oC/W if it is mounted on a square inch of
copper pad on a PCB, if not it may be even the double. Even
in that case, 0.34W will make it go 0.34 * 212 = 72oC
higher, taking it to 100 oC in room temperature. So… for
taking care that the maximum current you will ever need is
going to be delivered, multiply the maximum (input minus
output) voltage to the current and see if the thermal
resistance is low enough to give you a go or a no-go.
Actually the more output current you need given the input
voltage, the bigger body of regulator you need. Bigger is
lower thermal resistance. Going to very high current output
will require THT packages with aluminum coolers.

2. Dropout voltage: Do not choose for example a 0.9V
dropout if your input voltage in the previous example may
go as low as 4V.

3. Output capacitor requirement: Some very low dropout
regulators counter-intuitively require a special ESR specs
capacitor of ESR higher than some value ruling out ceramic
capacitors and making a big pain to find your right
capacitor.

p 135 2.6 Active components and ICs: Regulators and other useful

4. Availability (popularity) and cost.
5. Other specs according to special applications also, like

quiescent current in low energy circuits for long lasting
battery applications for example.

DC/DC (SWITCHING) REGULATORS

Linear regulators are bound by the following issues:

o Input voltage has to be higher than output voltage
o Input current equals output current
o Power (thermal) dissipation is very high if our input voltage

is a lot higher than the output voltage!

But they are simple. Also the output voltage they produce is very
stable and has very little noise, call it rippling, usually less than
10mV.

There is another kind of regulators which do magic with coils and

o May output higher voltage than the input voltage
o May draw less input current than the current they deliver

in the output
o They have almost no thermal problems in big input to

output voltage differences, e.g. may have 12V input, 3.3V
output 1A output and dissipate only 0.3Watts. (instead of
around 9W)

They are more complex (require more components) need big care
in construction or PCB design to have some wires (or tracks) sort
and thick, they have about 10 times the output noise of the linear
regulators. Most are one of those two kinds: Step-down or step-up.
Interestingly there is also the inverter kind that produces negative
voltage!

Step-down or “buck” switching regulators:

Let’s talk about a very popular one, LM2596. It is a
5 pin SMD or THT. As usual, you should start from
its datasheet if you ever start to design with it. Here
we will only get a first idea of what is involved in
such designs and see some specs and benefits of step-
down converters.LM2596 is an “old horse” very

p 136 2.6 Active components and ICs: Regulators and other useful

popular and quit “beefy” in size regulator handling up to 3A in
output current. For less output current other very small exist as
thermal dissipation requirements are low (thus thermal resistance
can be a lot oC/W). Here is a list of design facts:

o In all DC/DC (or switching) topologies, the output

(delivered) electrical power (VOUTIOUT) always equals to

around the 85% of the input (consumption) power (IINVIN).
That ratio is called efficiency. The rest (e.g. 15%) goes into
heat (power in Watts) and that is usually not that much. It
is also spread in the IC and in a peripheral diode.

o In step-down topologies, Input current is significantly less
than the output current. Example: Taking 12V into 3.3V,
0.5A output current makes about 160mA input current in
order to hold output (delivered) power a little less than
input power. Drawing less current for operation is a bliss in
batteries.

o Adjustable regulators (even linear adjustable regulators) use
a voltage divider of 2 resistors to define the output voltage
we require. Replacing one of those with a trimmer or
potentiometer makes them manually adjusted.

o Dropout is usually more than 1V
o Bill of Materials usually includes the IC, an input and an

output capacitor which strictly have to be of very low ESR
if ceramics cannot do the job, a coil of specs found in the
datasheet, a Schottky diode that can hold the output current
and 2 resistors in case of adjustable output ones.

o Some connections have to be sort with thick wires. In PCB
designs the ground has to be a copper flooded area. Many
implementations on a breadboard will fail!!

p 137 2.6 Active components and ICs: Regulators and other useful

o Do not trust the “maximum current” specification. Choose
an IC that can provide the double current than the
maximum of the current you require. That will also keep it
cool.

Considering those, it is not a bad idea to buy small modules – already
assembled PCBs that offer just 2 pads for input, 2 pads for output

and a trimmer to set the output voltage. Their
cost is really low and your drawer should have
some of various specs. It is more expensive to

make than to buy if you get those from China (e.g. Aliexpress)

Step-up or “boost” switching regulators:

Same apply. They perform the reverse function. Beware that now
the input current is higher than the output current. Useful e.g. to
make 5V from a single cell Lithium battery that is 3.3 to 4.2V. Their
dropout is usually 0V, meaning that 5V output regulator may work
even with 4.99V input. The advice is again to use ready modules
when possible. The current specification on them usually applies to
the input current that is the higher, in boost it is the input current,
not the output current delivered to you.

A final note: Wherever there are switching regulators with
electrolytic capacitors, the most common cause of failure is that a
low-ESR and low quality cap has got old, its ESR has raised and so
requires replacement with a fresh one of as low ESR and as great
quality as possible. This is a tip for repairing stuff or giving more
money when a system is built to last. Note that the failure has to do
with the magnitude of the current value, low currents will not wear
them quickly. Also note that caps store voltage and you should not
touch such connecting to main supply immediately after power
removal.

SWITCHING STUFF OF >20mA

A GPIO has very limited current sourcing capability. When we need
to turn on/off many bright LEDs, motors, buzzers or other such
current hungry stuff (called “load”), our GPIO can drive or
“command” a more powerful switch like:

p 138 2.6 Active components and ICs: Regulators and other useful

o A p-channel MOSFET: When the input voltage is the same
of that of the MCU supply, the circuit following can provide

that switching using all the
switching capabilities of a p-
channel MOSFET. When GPIO
is high (outputs Vcc) MOSFET’s
Gate’s voltage (VGS actually) is

zero, it is in “off” condition. When GPIO goes low, VGS,
that has to be negative in p-channels, is big enough to turn
it on. The MOSFET has to be chosen as to handle the
maximum current, better with a margin 2x and most
importantly to have such VGS threshold (low enough) that it
will turn fully “on” when that voltage goes equal to Vcc
(3.3V or 5V). 2A driving p-channels cost a few cents. Note
that there are “load switch” ICs that can handle higher input
voltages, driving correctly for our job an internal p-channel
MOSFET. That topology is generaly called “high side”
switching.

o Using N-channel or NPN transistors: Tricky but really very
useful topology to switch on and off anything. It is
important to understand this “low side” or “open drain”

or NPN output switching concept.
It is usually the first and best
choice too. On the circuit on the
left imagine we have such systems
(boxes with the switches) that
connect only to the ground
(take that as a limitation and a
feature too), they have a

“command input” from a GPIO and the other switch’s pole
open to place our load. Now take a look at the load. Its
positive supply has to be connected permanently as it is the

negative supply that connect to our ground or
stays floating. That’s the limitation that at
90% of the cases is not a problem. The feature
is that our load can connect to any power
supply as long as its voltage is not too high
for our switches. We may use a discrete n-

p 139 2.6 Active components and ICs: Regulators and other useful

channel MOSFET like we have on the left, choosing it as to
have low enough VGS threshold to turn fully on with our Vcc
that is output by our GPIO on its high state. As you can see
MOSFETS provide their drain to connect the load, thus the

“open drain” naming. MCUs GPIOs
also have open drain output
mode! limiting to their maximum
current around 20mA and to the
voltage at Vcc. What if two open drain

GPIOs (outputs) connect with each other (left) and one is
high while the other is low? No problem! We will see that
in I2C communication at least. Notice that the high state of
an open drain GPIO is floating, the low state is “short to the
ground”. That requires a pull-up resistor to provide a
positive voltage on “high” state.

Very useful in this concept of operation is the ULN2803 IC.
It uses BJT transistors instead of MOSFETs
(it is an “old horse”) providing 8 open
collector outputs (since BJTs have collector
in place of drain). It can switch up to
500mA, >30V loads having limitless uses,
especially in applications of driving many
LEDs such as many 7-segment displays,
LED arrays etc., it even goes to driving

small stepper motors and any other nice stuff. It is a chip
without power supply input.

o Using relays. We described relays in 1.11. When our
switching state changes very occasionally and / or the
power of voltage switched is high they are the choice,
adding the fact that they are real and practically ideal
switches. But, in the case we do not want to buy a relay
board with its driving circuitry, how do we drive their coil?
Simple enough, we use one of the previous methods since a
relay’s coil needs around 100mA to do its conduct
attracting electromagnet job. A note here is that when we
drive (switch) coils, there is a problem when we switch
them off. Since they react as to keep the current flowing in
them as constant as possible, in that event they produce a

p 140 2.6 Active components and ICs: Regulators and other useful

very high voltage themselves (called back-
EMF) in their effort to keep current - that now
wants to go to zero - steady. That usually
destroys our switching component. The
solution is to place a diode as in the circuit on
the left. That diode is already included in each
output of the ULN2803. We have to connect
the COM pin to the positive supply though.

Analog signal switches: ICs that act as relays for analog signals of
negligible current only (e.g. choose an audio input source). Start
from Analog Devices Inc if ever need.

DIGITAL LOGIC ICS

In the dark days when MCUs were not existing yet or were too
expensive, many simple ICs did a lot of digital functionality. They
still exist, we will visit some still useful in our software dominated
era. All are cheap and old school classics.

o Shift registers: They are parallel input or output. Input type
have 8 digital inputs (the parallel side), a pin commands to
“grab” or latch their state and then two signals, a clock input
and a data output provide our MCU with the 8 parallel
inputs states bit by bit, serially (shifted one after the other
at every new clock cycle). Output shift registers do the
opposite (set their 8 outputs). When GPIOs are not enough
in our MCU, shift registers come to the rescue to act as
GPIO extra inputs or outputs. They can also be connected
in chain, e.g. 3 acting as an 8x3 = 24 port system.

o Flip-flops: No, not for the beach, a flip-flop latches its state
making it a 1 bit memory storage device, useful to toggle
something by a button press for example.

o Timing: Delays, one pulse generators etc. The most classic
chip there is the most famous chip of all time (there is a
whole book written containing applications made only by
it), the 8 pin 555. You can make an LED blinking with it for
example. Rarely used today.

p 141 2.6 Active components and ICs: Regulators and other useful

o Logic Gates: If you have read at least one older written book
for electronics you should wonder: “why have we not talked
about them yet?” Well, if we approach electronics
mathematically they are important. In our practical and
physical approach we will see them only in software. Myself
in the last 20 years I have made use of only one gate. They
are the famous AND, OR, XOR and the inverted output
NAND, NOR and Exclusive-NOR, doing almost all
combinations one can do with 2 bits input (00,01,10,11)
and one bit output (0,1). There is also the one input / one
output inverter that may be some times handy. An inverter
outputs 0 when its input is 1 and outputs 1 when its input is
0. We will speak about gates in a software related chapter
later. Note that all our magic computer in our MCU chip is
comprised only of gates, some hundred thousand to
millions but they are in the micro cosmos of the silicon of
the chips and we are not about to design silicon (yet?).

AMPLIFIERS

Strictly on analog signals, we need some times to amplify some very
week for making them big enough to be able to measure them or we
need to make some powerful enough to drive a big loudspeaker for
example. The first category is <30mA consuming ICs with a vast set
of specifications especially about noise and bandwidth. In that

category there are some special “Swiss army
knife” style ones called “operational amplifiers”
or op-amps (left). There are standard topologies
that make them a voltage amplifier, an inverted
output voltage amplifier, a voltage to current

converter, a voltage comparator, filters of many kinds etc. There
are also instrumentation amplifiers that just do great amplification
of a signal with very great specs in accuracy. The second category is
usually of complete circuit boards, big and heavy according to the
power Wattage they can deliver. In those there is a category called
“class-D” that works like the DC/DC converters dissipating very
little thermal energy per Watt of output, therefor making amplifier
boards smaller and more powerful (if power is the main concern).

p 142 2.6 Active components and ICs: Regulators and other useful

A POTPOURRI OF OTHER ICS…

For completing the most of the picture, here is a list of others very
much useful:

o Battery management: Lithium battery chargers mainly
o Motor drivers: H-bridges and stepper motor controllers as

we discussed in 1.11
o USB to UART (serial port) converters: In that the Chinese

CH340G is a worth mentioning IC. Ready dongles are a
must have.

o Communications level translating ICs: There are serial
communications like RS232, RS485, can-bus and others,
each using different voltage / current levels to convey
information in long wires. An IC special for the application
is needed at such cases.

o Memories: Flash or RAM usually communicating with the
MCU by SPI protocol in as small as 8 pin chips.

o PWM and timing generators: the most advanced and handy
are controlled over I2C

o All digital sensors of course

We shall repeat for last time that in every IC we start from its
datasheet. If we are about to use it in our design we read and
understand it all in every detail unless we copy a circuit from the
internet that surely works and we despise advancing our self’s
knowledge.

p 143 2.7 Analog signals and measuring instruments

2.7 ANALOG SIGNALS AND MEASURING

INSTRUMENTS

If electric nature concepts got you tired this far, we will now on
relax with description of measuring instruments and techniques.
Briefly first we will add some concepts on signals since signals are
what we are about to be measuring.

SIGNALS: AC AND DC COMPONENT

The book you are reading is certainly unorthodox in presenting the
basic knowledge about electronics. Having visited the basics
regarding voltage, current and signals and gone up this far into
intermediate knowledge, we have not yet mentioned what
“AC/DC” is and that is intentional. Sometime in the early 70’s
somewhere in Australia, Malcolm and Angus Young developed the
idea for their band's name after their sister, Margaret Young, saw
the initials "AC/DC" on a sewing machine. made it to
become a great band and bang our heads a lot of times. Closing this
fact, “AC/DC” actually means "alternating current/direct current"
in electricity. Direct current is when its direction never changes.
Same applies for direct voltage, its polarity always keeps the same
direction as in our so far cases, more positive than the ground,
always. Alternating current/voltage changes its direction/polarity.
A negative voltage signal will be of lower voltage than the ground.
Fortunately in practical modern electronics that is a rare case.
Negative voltages are not permitted to be applied to any MCU pin.
They are needed sometimes in analog signals that may be alternating
by their nature, which in turn make us to supply amplifiers and other
circuitry with a positive and a negative supply e.g. +5V and -5V as
to operate in a range of negative polarity also. Ground is always the
zero voltage.

Here is a very important concept that is confusing: the AC
component of a signal. Take those two signals, a DC and an AC:

p 144 2.7 Analog signals and measuring instruments

Only the signal (2) is alternating. Even if (1) is not steady, it keeps
always the same direction. We call AC component the part that
fluctuates. In signal (1) it is 1V peak to peak, in (2) it is 4V peak to
peak. We call DC component or DC level the average value of
any signal, in (1) it is 2.5V in (2) it is 1V. So a signal fluctuates
around its DC value by the AC component. Since AC component is
an amplitude, we have to define if it is peak to peak, just amplitude
or another kind we have not talked about, RMS. RMS is a usual
term we meet in measuring instruments (which is what this chapter
is about). It is about the 70% of the amplitude (amplitude is the half
of the peak to peak amplitude) of an alternating signal. Actually it is
mathematically more complex, it depends on the waveform shape,
if our signal fluctuates around zero (DC level = 0) its RMS voltage
is how much DC voltage would cause the same heating to a resistor.

Enough about signals, let’s go to measuring.

A PRIMER TO MEASURING

Imagine you want to invest a million dollars, you are in a prison
inside a scammers section and you want to give your money to
someone to invest them for you. That is a gloomy picture of how
you should feel every time you measure something! You may be
scammed by many physical phenomena, by the instruments you use
and by yourself making mistakes in the process. Also there is no way
to measure something exactly (except perhaps counting number of
events with a reliable method). If a real voltage is
2.66484324851568654845375437 and infinite more digits (we will
never know this “absolute truth” of course) we may in best case
measure 2.6648432 ± 0.0000005V with a 10,000$ instrument

p 145 2.7 Analog signals and measuring instruments

following a very careful procedure mostly regarding the
environmental conditions. In 1.11 we said the basics about error,
mistake, accuracy and precision. Measuring is the ultimate
engineering, never think as a mathematician or a philosopher when
you are making your measurements and when you are processing
them.

MULTIMETER

A digital multimeter is the king of instruments, it is the most
important instrument, without which we can do almost nothing
with electronics. It is a volt-meter an amp-meter and an ohm-meter
at least. Fortunately even cheap ones costing just less than 10$ can
do most of the jobs and actually amazing well, but since it is our eyes
and ears we should spend 40$ at least on that. Some old-school guys
may present to you an analog (needle and scale) multi-meter, just
laugh at their faces if you see such an outdated in all specs instrument

(not all retro instruments are bad,
voltmeters are). We will see how to use
a cheap one since they are most
complicated as they have no automatic
scale functionality. Using an auto-scale
afterwards will be straightforward.

Voltage measurement: The two
probes have to be placed on the COM and
the V input sockets. Current measuring
input or measuring mode must not be
used for voltage measurement ever, since
current measuring is a sort circuit within
our instrument. That must be always a
concern, even dangerous if trying to

measure the mains voltage. With the rotating selection switch we
choose a scale on direct or alternating voltages. Here is the
use of our previous paragraph: DC selection will measure only the
DC level of our signal (it may be fluctuating, it may not) and AC
selection will measure the AC component only of our signal in RMS
(regardless its DC level, a battery for example will measure zero).
In DC voltage if the value is displayed as negative it means red probe

p 146 2.7 Analog signals and measuring instruments

is more negative than the black probe. What are those scales? In
VDC for example we see 200mV, 2000mV (=2V), 20V, 200V and
1000V scales. We have to select manually the smallest scale for our
signal. If e.g. we tap our probes on 3.45678V, on scale 200m we
will see “.1” meaning out of scale (there is never danger to damage
our instrument in a more sensitive scale), on scale 2V will still see
“.1” on scale 20V we will see 3.45V on scale 200V we will see 3.4V,
on scale 1000V we get 3V. You understand that the right scale offers
the highest resolution. Not to be bothered with that in auto-scale
instruments. All multimeters in volt-meter mode act as an open
circuit, not affecting our circuit by measuring it. That is actually

about 10MΩ resistance between the probes.

Resistance measurement:

For measuring how much a resistor is we choose again the Ohms
scale the same way, the smallest scale possible. That looks
straightforward enough, but measuring resistance has three pitfalls:

a) Our skin has a resistance of 10KΩ to 100KΩ (we can measure that
as well). When we touch both of the probes to keep them in touch
with the resistor’s leads, we place that (human body’s) resistance in
parallel to the resistor measured. That is no problem for measuring

resistors <100Ω and big problem for >1KΩ, making bigger the
deviation (reading lower than real value) the bigger our resistor is.
We should touch our resistor only on its one lead with our hand! b)
If we measure a resistor that is soldered on a board or connected to
other components, our measurement will be very wrong due to
other resistances in parallel as well. c) Even worst if there is voltage
applied or charged capacitors in the previous case since our
instrument measures resistance by applying a small current and
measuring voltage.

Exactly the same rules apply to some multimeters measuring
capacitance.

There is a special resistance measuring mode called “continuity
testing” that uses an internal beeper, usually displayed with this
symbol. Our instrument beeps when its probes connect together by
a wire (or are sort-circuited). This is very useful to see if something
connects directly to something else. It actually beeps in any

resistance lower than around 30Ω, voltages should not be applied of

p 147 2.7 Analog signals and measuring instruments

course. That mode usually carries a symbol of a diode also. When
we measure a diode, it measures approximately its forward voltage
drop when connected positive probe to anode, negative probe to
cathode and out of scale (open circuit) in reverse. That is a quick
diode tester. At some LEDs is makes them shine a very little bit also.

Current measurement:

For measuring current we must cut-off a wire and connect in-series
to it our instrument that has to act like a wire (zero Ohms). Our
probes so are sort-circuited and we have to be extra careful at what
we will touch with them. Never also leave a multimeter in current
measuring mode when the work is done. There are two inputs
(probe’s sockets) for current a [mA] input and an [A] input (usually
20A). The latter is for the higher scales. If we open our multimeter
we will see inside a thick wire connecting COM and 20A input
directly. The 20A (in some 10A) input is an input we trust of being
a practically ideal sort circuit so it will not act as a resistance, adding
e.g. a few Ohms resistance in our circuit so making the current that
flows less than it should be while we are measuring. Note that in
high currents e.g. 5A, even 0.1Ohms make trouble (0.5V voltage
dropping). That is usually the only problem of cheap multimeters,
not the multimeter itself, but the probes cables, having thin wire in
them. You should own a pair of good quality thick wires probes. All
multimeters have no protection in that current measuring input (a
fuse for example). That’s not so bad. Actually, momentarily they
can hold 40A at least and it is very hard actually to burn one (if
probe’s wires will not burn first). Also, they will not burn a fuse at
any case and their resistance is zero. The only counterpart is the low
resolution at one scale only, 20A, providing 0.01A resolution
usually. The [mA] input works at the rest of the current measuring
scales but has a great problem: In most instruments it is limited to
200mA, exceeding that burns an internal protection fuse that we
have to replace (and own some spares) by opening the instrument
or its battery compartment at least! They also have a very few Ohms
in series resistance, higher the lower measuring scales are, so it is

not an ideal current meter. But measuring e.g. 10mA with 1Ω in
series resistance makes a voltage drop of 10mV only affecting the
current flow very little in most cases.

p 148 2.7 Analog signals and measuring instruments

LOGIC ANALYZER

We will be covering our measuring equipment from most important
and affordable to less important/affordable. The next one we should

have in our MCU dominated world is a logic analyzer.
What is a logic analyzer? Imagine making a circuit using
some GPIOs of an MCU configured as digital inputs
(measuring only “1” or “0”) and a program recording
their values very fast. Displaying then this recording in
our PC (over a USB connection) gives us the ability to

see what information is conveyed by serial communication protocols
(UARTs, I2Cs, SPIs) or how other digital world signals behave so
that we can find out how well programs work, mostly in time
accuracy or where is a problem in data transmission mostly. A logic
analyzer 10 years ago costed over 2000$, now great devices for the
job cost 5$!! A PC has to be on our bench, as always. They can
sample at speeds over 20MHz (or Mega samples / sec) up to 8 or
more inputs. Since we want to see only around a very specific area
in those vast data produced, the trigger concept is introduced.
Trigger is an event occurring in conditions set by us, e.g. on the first
rising edge of an input. Trigger event is usually the time zero, before
that event time is negative e.g. -2,-1,0,1,2,3…

OSCILLOSCOPE

Oscilloscope is kind of the instrument “of a wealthy man who has
them all”. It measures and plots
voltage vs time. Having an
oscilloscope (a “scope”) we see
almost anything in our circuits
(voltages only). We measure
well any timing matter
(frequency, period, duty cycle
etc.), we see any fluctuation

(discovering always unwanted ones like noise, spikes, short timed
deeps in supply voltage etc), see the real shape of pulses etc. It is

p 149 2.7 Analog signals and measuring instruments

amazing how analytical we can see in time scale, medium grade
scopes provide up to nanoseconds per horizontal grid division
(time/div) scales. They are specified mostly on how many input
channels they provide (two are mostly needed), how fast they
sample voltage (samples/sec, anything more than 100MS/sec is
awesome), their input signal bandwidth (anything more than
100MHz is awesome, this is for sinusoidal signals, 100MHz is good
for square waves up to around 20MHz) and other features. Old
times scopes, called analog scopes had a phosphor CRT screen
without capability to store or hold steady a measurement (graph).
They are awesome for analog signals still but in our digital
dominated world we should prefer a Digital Sampling Oscilloscope
(called also DSO). They may be separated in two kinds, those with
their own screen and buttons and those that use a PC for display and
user interaction. Over the same money do not choose a small screen
scope versus your full HD monitor, you will lose terribly much
information on your signals in a small low-res screen. It is advised
to spend over 50$ on a DSO, preferably around 150$ if it is a USB
one using your PC and over 200$ if it goes with its own screen and
buttons. High-end scopes go up to GS/sec and GHz bandwidth but
your signals will very rarely be over 10MHz. Chinese Rigol and
Hantek are some nice value for money brands as well as others,
while on the high-end we have the amazing Tektronix, Keysight and
others.

On a scope we also have DC and AC “input coupling mode” like in
the multimeter. AC is useful to see small fluctuations “riding” a
steady big voltage (DC value) like fluctuations of mVs on a 5V
power supply line for example. DC coupling shows the signal as it
is. Trigger is a core functionality when we try to grab some non-
periodic events like a once in a while occurring pulse or when we
need to hold steady a periodic signal on our screen. You should note
that all scopes have their ground connected to the electrical grid’s
ground, so do many other USB connected devices (connected to a
PC connected to the mains) and that must prevent us to connect any
ground clip of its probes to any positive or negative voltage.

p 150 2.7 Analog signals and measuring instruments

SIGNAL GENERATOR

They are not measuring instruments but they are very useful to do
quick experiments which you will be measuring in our scope. They

are devices that produce waveforms of sinusoidal,
square, triangle and other shapes (the first two are
only important) of selectable frequency and
amplitude. Thankfully those days we can get one

going up to 5MHz with less than 20$ if you search for “signal
generator DDS”. Note that this is not a “must-have” device, but very
useful if you engage in analog electronics like amplifiers and filters
or need some crazy science quick experiments.

LAST AND VERY IMPORTANT FOR

OUR BENCH: POWER SUPPLIES

Each circuit needs a power supply. You also need one for testing
motors and other devices which just work if voltage is applied. One
thing is to get a fixed voltage. Another much greater is to adjust your
output voltage smoothly with a knob (potentiometer for example)
in order e.g. to find out your minimum operating voltage easily and
do many other experiments.

Power supplies act like voltage sources of very little internal
resistance. Besides the easily understood spec of their voltage output
range, the spec of current output defines the maximum current they
can deliver (using less than that is a bliss, using near that max level
is not recommended). Good power supplies also can adjust the
maximum current they can deliver by providing an adjustable
current limit. That makes them safer to our circuits in the bad
case they behave as sort-circuits. They can stay sort-circuited
forever delivering the max current set. They can also serve as
battery chargers where the delivered current has to be limited to a
set value. That makes them another kind of supply source we have
not seen so far, the current source. A current source is an auto-
adjusting voltage source that lowers its voltage so that the current
will be kept at the set limit. If its load (supplied device) resistance
goes higher than some value it will not output voltage higher than
that set to the supply, so it will output less current up to the point
of zero current at open output. For example if we set our supply at

p 151 2.7 Analog signals and measuring instruments

10V output, 1A limit, connecting a 0 Ohm resistor will output very
little voltage and 1A of current, connecting 5Ohms will output 5V
and thus 1A of current, connecting 20Ohms will output 10V and
10/20=0.5A of current (1A here should require 20V), open circuit
will output 10V, 0A. Practically you adjust the voltage then adjust
the current limit by sorting the supply’s output and then connect it
to your circuit.

The power supplies from lower to bigger money go as follows:

o Zero money: Take an old USB cable, cut it near the USB
socket that connects to the device, strip its cables and use
the black and the red one. It will provide 4.5V to 5.2V up
to 500mA, even more if connected to a phone charger.

o Get a wall pack that outputs 15V or more, 2A output if
possible (around 5-10) or a laptop power supply and
connect its cable-end to cheap step-down modules costing
around 1$ each. In all cases your drawer should always
contain 3-5 such modules.

o Do the same as previous with a more sophisticated >3A
output current step-down module that
has voltage and current display and
current limiting (3$ to 10$). Have at
least 2 such modules.

o Be a pro. All previous switching DC/DC modules have a
noisy output. There is another kind of supplies from old

days that uses a transformer (big, heavy with
lot of expensive cooper) and linear regulators
for the job. Its ripple is less than 5mV in light
loads, compared to 100mV or more in
DC/DCs. A 30V 5A such should weigh about

5Kg but it is worth the money if you are well equipped of
other stuff (level of lab equipment 3 and 4). Choose one
that has no fan to cool itself since the ones with fan are too
noisy (I mean too noisy) and actually of cheaper materials
due to less aluminum in their cooler (remember, linear
regulators heat a lot). Good money for such are about 100$-
200$ for 5A.

p 152 2.7 Analog signals and measuring instruments

Recommended never to buy: Switching mode supplies with
color graphics screen, lots of buttons and dials costing less than
200$. Any such devices make your life harder only to adjust two
values (voltage and current), your money go to fancy screens
and you get all the badly regulated output with a lot of ripple,
sometimes as terrible as more than 300mV.

p 153 2.8 Microcontroller anatomy: Deeper exploration of the rooms of the magic castle

2.8 MICROCONTROLLER ANATOMY: DEEPER

EXPLORATION OF THE ROOMS OF THE

MAGIC CASTLE

We leave general electronics knowledge behind and move on to a
different scenery, that of a computer. We will be wondering inside
a world with CPUs, MCUs, Arduino boards and software. Those
are far more functional in making our imagination and thoughts
about what our project should do to come true (like “hmm… I’d
like when that happens to receive this message and to activate that
system”). Let’s wonder into the computer world, like in the TRON
movie, but for real.

In Chapter 1.9 we show a castle. We will make another round in
the MCU castle, repeating some things as to put them deeper into
our long-term memory.

A quick refresh in the binary system for start: 4 binary digits (bits)
hold up to 24 = 2x2x2x2 = 16 numbers (since they include zero,
0…15 that is 0000…1111), 8bits that is a byte, hold up to 28 = 256
(0…255), 16bits hold 216 = 65536 numbers and 32bits hold
232 = 4 294 967 296 numbers.

CURRENT STATE OF THE ART IN <5$ MCUS

(EARLY 2020)

A micro-controller or MCU is a full computer with peripherals in
one IC. The core that executes the program commands is the CPU,
which together with the memory forms the computer. The rest are
hanging around that, as rightly named, peripherals.

How powerful computer that is? In STMicroelectronics (ST)
products we find up to 48MHz clock, around 48 MIPs execution

speed (Mega Instructions Per Second) of 32bit
numerical data/commands size (we call it 32-bit bus
CPU) 256Kbytes flash program memory (fitting
enormous programs of more than 20,000 lines of

code), 32Kbytes of RAM memory (for temporary or changing data)
and 51 GPIOs on a 64 pin QFP package. That’s the STM32F030RC
costing around 2$ for 1-20 pieces. On peripherals it offers a great

p 154 2.8 Microcontroller anatomy: Deeper exploration of the rooms of the magic castle

performance 16-input ADC of 12 bits (4096 steps) resolution that
is very fast (1MSamble/sec), 6 UARTs, 2 I2Cs, 2 SPIs and lots of
timers. Those peripherals share the 51 GPIO pins. Having this as a
reference (a great value / money choice to be noted) we may start
to imagine what we can achieve in designing and making boards of

total components cost of one figure. Another worth
mentioning MCU is ESP32 from Chinese Espressif
costing, as a module with memory and antenna
included, around 2.5-4 offering much greater
CPU and memory size, less peripherals in GPIOs and

ADC though, but powerful Bluetooth and WiFi communication
functionality that can implement easily Internet client and servicing
functions. Arduno MCUs (ATMega328) unfortunately are old
designs of ICs and even though they cost around 1.5$ each, they are
far more mediocratic but very great for automations projects. They
are still in great use mostly because of the software compatibility.
Anyway most of real projects require less than 1000 lines of code,
served by the Arduino UNO adequately. Software in all history of
computers is what makes users what computer to choose. To my
view, that is right.

CPU CLOCK SOURCE

In a computer’s CPU a clock is a square periodic waveform signal at
an x frequency. At every period of that clock signal (every clock
“tick”) the thousands transistors in the CPU make their next
operation - that is executing the next command of a program -
(exception is in big CPUs of PCs and smartphones which are
pipelined, executing more than one command in one clock pulse).
Circuits that produce a periodic signal (at a specified frequency) are
called oscillators. There are two usual ways to produce the clock
signal (with the frequency we like it to have, up to the maximum
allowed) for an MCU. Either with an internal oscillator or another
internal oscillator that uses an external crystal. The first requires no
components but offers frequency accuracy around 1%. Any time-
measurements or time-calculations in our program will also be of

the same accuracy. External crystal oscillators
require a component called “Crystal” and 2 small
value capacitors. The frequency accuracy goes to

p 155 2.8 Microcontroller anatomy: Deeper exploration of the rooms of the magic castle

about 30PPM (parts per million) = 0.003%! Each crystal produces
one frequency, so does the internal oscillator, internal frequency
dividers and multipliers (PLLs) can convert it to our desired clock
frequency.

TIMERS

Since we talked about clocks, the timer peripherals (there are more
than one independent timers) use the clock frequency to count time
or produce timed signals of their own, not requiring program
commands executing in the CPU to do that functionality. The main
benefit is that they will never miss one clock’s cycle regardless of
what our program is doing, functioning un-interrupted in the
background. In the 16MHz clock of Arduino UNO, a timer counts
up to the number 16000 and interrupts our program to increase a
milliseconds counting variable by one. That way we now the time
in milliseconds passed since MCU started to execute our program
using the millis() function. Other applications of timers are to
produce accurately timed PWM signals, count pulses of GPIOs
never missing any whatever our program is doing, feeding
peripherals like UARTs with a specified frequency made by dividing
the CPU clock to a number (count up to 100 for example for making
a new pulse should divide our clock frequency by 100) and other
such functions. There is a special timer in some MCUs called RTC
- Real Time Clock. It provides calendar and hours-minutes
counting. Moreover it can use a separate crystal of 32,768Hz
frequency (that is 215 for a good reason) and a separate power supply
source in order to keep working with a miniature battery while our
MCU is off. In Arduinos that functionality is well served by external
boards which carry their own coin cell battery, communicating with
our MCU over SPI.

ADC

As said in 1.9, ADC means Analog to Digital Converter. An ADC is
one peripheral with an analog switch at its input, connecting to more
than one pin of our MCU. We select which pin to connect to (one
pin) and then we instruct it to measure. Its main specs are the
resolution in bits, 12bits is 212 = 4096 steps (0…4095) for example.

p 156 2.8 Microcontroller anatomy: Deeper exploration of the rooms of the magic castle

That will convert a voltage of 0V into a digital value (a number) of
0, and the maximum voltage allowed that is usually the Vcc e.g.
3.3V into the maximum of that number, e.g. 4095 for 12bit. All the
rest are proportional to that, e.g. 0.33V (10%) will make the 409
number. ADCs do not convert or measure instantly. Fast ADCs
found in MCUs take around 1usec to measure or can measure up to
1million times per second maximum. That is 1Msamples/sec since
we call one measurement, one sample. All measurements done
solely with our MCU have therefor accuracy, resolution and speed
limited by our ADC’s performance. Note on that the fact that all
ADCs have some input noise, if a steady voltage of 0.33V for
example is measured, ADC’s samples may be: 409, 411, 409, 406,
408, 409, 410, 407,… fluctuating randomly ±2 to ±4 units
(counts) around the correct number. If we collect some samples and
take their average we fix that a lot. Checking the absolute maximum
ratings in our MCUs datasheet, we see that all MCUs pins, including
the analog input pins can never accept voltages higher than the Vcc
or lower than 0V (reverse). Keep that always in mind. Measuring
higher voltages takes a simple voltage divider, measuring reverse
(negative) voltages is harder, needing special amplifiers.

Finally there is the opposite of the ADC, the DAC that is the Digital
to Analog converter, not found in all MCUs though. It is needed
rarely since PWM does that function even more practically in most
times.

UARTS

UART communication or serial com will be in your everyday life.
Since it is a very simple and very old protocol, it requires us to set a
data speed at both sides, if that does not match no data pass through.
It also requires to set how many bits we have per frame (7 or 8), the
number of stop bits that makes a frame (1, 1.5, 2) and parity check
if any (None, even, odd). In 99% of the cases those are “8N1”
meaning, 8bits, No parity, 1 stop bit. It is suffice now not to analyze
those more. Speed or data rate, called also “baud rate” is measured
in bits per second (bps). Those are not any number, the usual ones
are 1200, 2400, 4800, 19200, 38400, 57600, and 115200 bps.
There are also some higher, 115200 is very handy and common.

p 157 2.8 Microcontroller anatomy: Deeper exploration of the rooms of the magic castle

Usually the two parties that communicate are our MCU and our PC,
we have to set our serial terminal or whatever other software is used
for communicating over our serial port to the baud rate our MCU
is using. Have in your drawer more than 2 spare USB to UART
dongles at all times. Depending on the PC operating system, they
appear as “COM” or “tty” devices when properly installed. We also
have to choose the proper serial device to connect with when more
than one are present. Arduino UNO and others include a USB to
serial chip on their board.

UART has an RX (receive) and a TX (transmit) pin. Two UARTs
(MCU to MCU or MCU to USB2UART dongle) have to connect
one’s RX to the other’s TX at both 2 signals. Take some care not to
connect TX to TX since you connect two outputs together. Also
take care not to connect a dongle set to 5V (5V or 3V3 is a selection
set by a jumper) to a 3.3V MCU or vice versa. We will visit the 5V
to 3.3V compatibility issue later.

Last, UART is a very easy protocol. Whatever comes to the RX pin
of the MCU is well received, byte by byte while we may
concurrently transmit anything byte by byte on the TX pin (A bi-
directional or full-duplex means of communication). On the data
our program is handling, there is no protocol at all. We will visit a
protocol next in I2C. We should take the chance here to note the
old RS232 interface. That is a UART on strange voltage levels for 1
and 0. 1 is around -10V and 0 is around 10V! RS232 performance is
a lot worse than just 0-3.3V signals in long cables at high speeds and
is only a pain to use it. In the cases we need to communicate to
RS232 devices, ICs like the MAX232 covert 0V-Vcc voltage to
RS232 levels. You may encounter the old name “TTL level”
referring to the direct MCU pins’ 0V-Vcc signals.

I2C

Two wires are needed, one is the clock (SCL) and the other is the
data (SDA). It is far more complicated than UART but allows one
device called master to connect at the same time to more than one
“slaves” and talk with them all. UART cannot do that, so one I2C can
be as many as 100 or more UARTs. It goes by two speeds 200Kbps
or 400Kbps, no needed to be set since the clock signal provides all

p 158 2.8 Microcontroller anatomy: Deeper exploration of the rooms of the magic castle

the timing. SDA though has to handle both directions of
communication (transmit and receive). There is a data protocol well
defined that all I2C devices follow. Slaves (sensors ICs etc) have a
fixed address, master askes to receive some data from x address slave
device or to transmit some data to it. The start and the end of data
transmission are special CLK and SDA signal levels combinations.
There is also an “acknowledgement” response from a slave, toggling
SDA in a special timing. That all makes software a little more
complex but it is the de-facto interface for most sensors, special

function ICs and small size screens. Next we see an example of 4
bytes transmission, first group of pulses is the address request, atop
is the clock signal, below is the data signal. Both SCL and SDA work
in output open-drain mode, each needs an external pull-up resistor
of 1K to 10K (higher speed requires less resistance). You should not
use wires longer than 1 meter for I2C communication, it is designed
to work only “inside the box”.

SPI

SPI for Serial Peripheral Interface or “Spy” in nickname, is an ultra-
fast and ultra-simple serial protocol with a clock signal. Its speed can
be any from almost zero to 20Mbps or more, it is bi-directional
(transmits and receives the same time using separate lines) but uses
3 lines and needs one more for every device it connects to. It is
simple to describe. There is a master (MCU) and slaves (ICs),
master outputs the clock signal (CLK), receives by the MISO signal
(Master In, Slave Out) and transmits from the MOSI (you guess…)
signal one bit every rising or falling edge of the CLK. There is one
“device select” line (pin) for every slave output from the master,
only the one selected should respond, usually “active low” i.e. the
one that is zero value is active. Like I2C it is not to be carried by
wires more than about 1 meter away. High speed and parasitic
capacity of wires impose a limitation on this.

p 159 2.8 Microcontroller anatomy: Deeper exploration of the rooms of the magic castle

ANALOG COMPARATORS

Each compares two voltage inputs acting “analogly”, if one is higher
the result is “1” otherwise the result is “0”. With an ADC we usually
can do that as well.

WATCHDOG

This is a dog watching out your MCU. If you keep it active and do
not feed it for a while it eats your program by doing a reset. Really,
let’s see what it is… It is a timer that counts down like a timer of a
terrorist bomb (no there are no red digits and colored wires), when
it reaches zero, boom, it resets all the MCU. Your program should
re-start it periodically, if it fails to restart it within the duration of
its full count-down probably your program is stack somewhere so
your system will remain stuck forever. But the watchdog will save
the day by making that automatic reset. In most cases we de-activate
the watchdog at the beginning since it is a lousy thing. In Arduino
and in most MCUs’ software it is by default de-activated.

PROGRAMMING YOUR MCU’S

FLASH MEMORY

The program made on your PC is “downloaded” to you MCU by
either a special interface for that (SPI, JTAG, SWD, the two later
are for that sole purpose) or by a UART and the use of a software
that has to be already in your MCU called “bootloader”.

The Bootloader has to “listen” to the UART when the system starts-
up and if data denoting in a pre-defined protocol “we have a program
for you” arrives, it starts to take the program data byte by byte and
write them in the flash memory. Note that flash memory can be
written about 10,000 times in its whole lifetime and that writing any
byte of it requires to make a procedure of erasing and re-writing a
whole group of bytes (a page that is 256 bytes or more). So flash is
considered a permanent memory that may hold in very rare cases
new data written to it by our software.

Bootloader is simple but needs the bootloading program somehow
to be written already (“flashed”) in the flash memory. Note that
Arduinos are using this method, there is a bootloader already

p 160 2.8 Microcontroller anatomy: Deeper exploration of the rooms of the magic castle

written in the MCU that welcomes any new program by the UART
port. Bootloader stays there forever. If you purchase a new MCU
chip there is no Arduino bootloader in there!

ATMegas can be programmed using a programmer dongle that
connects to them over SPI bus. Fortunately nowadays it is very
cheap (<3$), it is good to have one, though you may never need it.

Other MCUs, especially “ARM core” MCUs use JTAG (about 4
wires) or SWD (2 wires) programming interfaces with special USB
dongles.

p 161 2.9 The hardware of the Arduino UNO board and others even greater

2.9 THE HARDWARE OF THE ARDUINO UNO

BOARD AND OTHERS EVEN GREATER

As for every IC we start and cover all the way to knowing about it
reading its datasheet, we will do the same with Arduino UNO’s
MCU, ATmega328P, staring from page 1 and 2: (note the datasheet
is for a series of ATmegas)

p 162 2.9 The hardware of the Arduino UNO board and others even greater

That’s an overview to know what capabilities we have. Note that the
ATmega series is now around 15 years old!!! (@2020) The first
Arduino was released on 2005 with a very similar ATmega8 MCU
the first Arduino with ATmega328 was released in 2008. They all
have been manufactured by Atmel, which since 2016 is acquired by
Microchip Technology Inc. Do not feel discouraged by that fact, you
can make circuits on breadboards by those really old MCUs since

p 163 2.9 The hardware of the Arduino UNO board and others even greater

they are also in 28 pin DIP THT package! Another good thing
is that we start with a simpler MCU, ramping-up to the
knowledge, not jumping to the 5x more complex in
peripherals arsenal of nowadays MCUs on our first step.

At some of those specs you may scratch your head about what they
might be, no need to learn everything from now, you can google a
lot as you proceed to what will be useful to learn for your specific
project needs. You also learn a lot more about the hardware the
more you learn about software.

Arduinos are nothing more than ATmega “development kits”, or
boards having all the usually required components for generic use,
plus connectors for easy experiments, especially by using DuPont
cables. We will start and keep going with the most classic and the
most “Arduino” of Arduinos, Arduino UNO (left photo taken from
arduino.cc web site)

Take a moment to read all those silkscreen markings on the PCB for
what each female header pin is. Taking them from left bottom anti-
clockwise they are: A group of supply pins, a group of analog input
(ADC input) pins that also function as GPIOs if set so, UART’s RX
and TX, GPIO pins (the ~ ones provide PWM output capability) and
finally the two last with no label on the top layer show on bottom
layer SDA and SCL of the I2C bus. They are internally connected to
the A4 and A5 pins (I2C shares GPIO pins such as ADC does, each
pin connects to the peripheral we set it up to connect to).

All there is to know about its hardware is reading all about the MCU
from its datasheet and studying its schematic, showing what
connects to what. Understanding the schematic also may need
reading more datasheets and maybe gaining some generic

p 164 2.9 The hardware of the Arduino UNO board and others even greater

knowledge, but let’s start from the deep. Here is our first big
schematic, that of Arduino UNO (revision 3).

The original Arduino’s schematic embeds a rather complex USB to
UART circuitry, so I felt it was a bit complicated for looking at it
for start. The above schematic is not of the shown PCB but does the
same function to whatever is connected to any socket in a simpler
way, so it will serve us well here. There are some variations of the
Arduino Uno boards on the market. Other are compatibles using
alternative but with the exact same functionality components,

p 165 2.9 The hardware of the Arduino UNO board and others even greater

others are exactly the same with the original Arduino Uno. Since it
is an open hardware project they are not “illegal China copies”
(neither if you make yours will be any illegal copies) unless they
carry the braded name “Arduino UNO” without the word
“compatible”. Not dealing with the USB to UART bridge chip
FT232RL (that needs a datasheet reading for its own), you should
understand the most of it. Notice net labels to describe what
connects to what besides just drawing wires. That is an easy way to
draw schematics, I prefer more wires than labels though since you
follow them with your eyes easier. The op-amp on the left works as
a voltage comparator to cut-out the USB supply input when the
power input socket has a connected supply offering to our board
more than 6.6V+a diode voltage drop = around 7.4V. The second
op-amp was just there in the dual op-amp chip chosen and actually
does nothing, it is configured as an amplifier with gain 1x (output
equals input). Be prepared to question some details in boards’
designs you will see in the Arduino’s world!

5V VCC VS 3.3V VCC CIRCUITRY

In the old days, speaking of middle 90s and back, most digital
circuits used 5V as a de-facto supply voltage. Arduino design caught-
up the digital world of early 2000, taking the nowadays awful
decision to use 5V supply (but probably a good choice for then).
Almost all MCUs and digital ICs now are supplied with around 2.5
minimum to around 3.6V for maximum, working best with 3.3V or
3.0V. 3.3V is the most usual supply voltage. As years pass, a few are
emerging at 1.8V supply voltage. Low supply voltage is lower

power (P=VI) consumption that is gold in the battery operating
devices including smartphones.

Connecting digital lines of circuitry supplied at 5V (Arduinos with
ATmega MCUs) to digital lines of circuits supplied at 3.3V is really
problematic. 3.3V outputs will “drive” well 5V inputs (3.3V will be
understood well as “1”) but 5V outputs may burn 3.3V inputs

exceeding their maximum allowed voltage. Some
MCUs GPIOs (not all) are 5V tolerant while supplied
at 3.3V. In most cases we need special circuits (you

p 166 2.9 The hardware of the Arduino UNO board and others even greater

will find easily) called logic level converters. Some cases are
resolved by using just a voltage divider (5V to 3.3V)

BEYOND ARDUINO UNO

Others of greater performance than the Arduino UNO exist.
Almost all also at 3.3V power supply. Prepare to find a lot, I mean
more than 20 kinds and more than 100 models. Outstanding are:

o 100% like Arduino UNO with ATmega MCUs, more or
less pins and memory: Arduino MEGA 2560 provides a lot
more resources, Arduino Nano is like a big DIP chip that
thanks to its male pin headers snaps well on breadboards.

o ESP8266 based boards with most notable the “NodeMCU”:
Lilliputian on GPIOs and peripherals,
carrying the great ESP8266 MCU with
WiFi radio capable to do awesome things

over internet or your local WiFi network, costing around
2$! 3.3V supply

o ESP32 based boards with most notable the ESP32
development kit: carrying the mighty
dual core ESP32 that does what ESP8266
does plus Bluetooth 4 plus lots of

memory (4MB flash, 520KBs RAM!!) and around 20
GPIOs, costing around 4$. 3.3V supply

o STM32 MCU arduino compatible boards like the Blue Pill
STM32F103C8 and others: Offering
the Arduino Nano style with
ATmega328 x 10 capabilities and an

awesome ADC, costing even less than the Nano. Need to
read extra instructions for about 2-10 minutes, and google
a little bit about the fake boards in the market. 3.3V supply.

All those are supported by the Arduino software libraries (or
framework). There is a whole universe of great MCUs not
supported by the Arduino software. They are a lot more complex
to begin with, so we will not talk a lot about those in this starting-

p 167 2.9 The hardware of the Arduino UNO board and others even greater

up book. It is recommended to get involved with those right after
some Arduino framework coding. Note as a good choice
(subjectively) the STM32 MCUs with ST’s software libraries and
IDE tools. This far you will be capable to estimate any MCU’s
capabilities by reading its first page of the datasheet or viewing its
features on distributors (like digikey and others) search results lists.
We try to learn how to fish rather than getting cooked fish dishes
from this textbook.

p 168 2.10 Some real Arduino circuits with sensors and displays

2.10 SOME REAL ARDUINO CIRCUITS WITH

SENSORS AND DISPLAYS

Let’s get into real and well working designs.

PROJECT #1: BASIC I/O (IN/OUT)

Let’s begin with a simple concept, a circuit controlling fully some
LEDs (D1,D2,D3), even how brightly they shine with PWM
control and two inputs for the user (you) to interact (play) with it,
a button and a potentiometer. This example is not any useful as a
system, it is about using some GPIOs and an ADC input for real.

Notice we prefer using as less net names (labels) as possible and use
as many lines as possible, except for the supplies and ground nets
(net and circuit node are the same, as we have said, all points of a
node are connected together therefor have the same voltage).
Notice that our ground connects to at least one of the ground pins
of the Arduino and our Vcc is connected to the 5V power supply of
the Arduino. The Arduino and our circuit with it, should be
powered by either the USB socket or by its DC “power in” socket
next to the USB socket (7V to 12V DC).

In this project we will take the opportunity to cover various Arduino
UNO knowledge that is needed every day (if we get so involved as

p 169 2.10 Some real Arduino circuits with sensors and displays

to have every day an Arduino UNO in our hands of course). We will
also pay a quick visit to software commands and settings involved,
as to become better friends with it. All software commands are
covered in full detail (something like a datasheet) in the Arduino
reference page of arduino.cc web site (just google “arduino
reference” without the quotation marks). This chapter will be 90%
hardware focused.

GPIOs:

Output mode: We need such to be the pins 9,10 and 11. In the
setup() section (function) of our program that runs once at startup,
we need to place the command (function call):
pinMode(9,OUTPUT); and accordingly for for 10 and 11. Note that
in other MCUs we may choose the output type to be push-pull or
open-drain. In ATmega case it is push-pull only, meaning it has two
MOSFETs, one connects it to Vcc whem set to 1 and another
connects it to GND when set to 0. Open-drain as we said earlier has
only the GND connecting MOSFET.

We set the value of an output pin at any point in our program using
the command (function) digitalWrite(), setting pin 9 to high goes
as: digitalWrite(9,HIGH);

Input mode: There are two input modes, input, that is a floating
state (connected with nothing) just measuring its voltage and input

with a pull-up resistor that uses an internal resistor around 50KΩ
connected to the Vcc. That resistor keeps it at 5V (Vcc) when
connected to nothing. In our case for the button we have to use the
pull-up resistor otherwise while our button in not pressed (is an
open switch) pins 8’s voltage should be randomly fluctuating. Yes,
it is the pinMode() function again, now as pinMode(8,

INPUT_PULLUP); (non pull-up is declared with “INPUT”).

We ask to get the value (0 or 1 or equally HIGH or LOW) of a GPIO
input at any point in our program using the function
digitalRead(8); for pin 8 in our example.

PWM output:

So far, by using pins 9,10 and 11 as digital outputs we can either
turn on or turn off an LED (make it blink or whatever on-off
sequence we can do using time and logic). The 6 pins with the ~

p 170 2.10 Some real Arduino circuits with sensors and displays

symbol have PWM capability. Adjusting PWM duty cycle (0% to
100%) we can adjust the ratio of time each is on to the time it is off.
The frequency is 490Hz at some of those pins and 976Hz at some
others, fast enough our eyes not to catch the flickering of the LED’s
light, so its average value will look to our eyes a continuous, steady
brightness (equal to the duty cycle ratio x the “always on”
brightness).

ATmega328’s timers offer 8 bits resolution to the duty cycle setting,
that is 28 = 256 steps (value range is 0...255). So, driving it with
PWM of 50% duty cycle will require to use 255/2 parameter =
128. All other ratios are just proportional (value goes 2.55 for every
1% of duty cycle, only integers of course). In our software it is
terribly simple, we must already have set it up as OUTPUT and at any
point of our program use the command (function)
analogWrite(9,128); for setting e.g. LED D1 shine at the half
of its brightness

Measuring with the ADC:

ATmega328 has a 10bit resolution ADC. 10 bits is 210=1024 steps
of resolution or “counts” (a kind of poor performance considering
some added noise). In our circuit, the potentiometer’s wiper (or
cursor or middle pin), acting as a voltage divider output will have a
voltage of 0V when it is at its one end, Vcc (5V) at the other end
and all the voltages in-between at the other intermediate positions.

ADCs have the concept of the “reference voltage” that is the voltage
at which reading (ADC measuring result) is at the maximum count
(1023). We can select it, the default is Vcc (5V). Therefor it is: 0V
 0 counts, 5V  1023 counts. So every count in the number our
software reads is 5V/1023 = 4.888mV. If e.g. we read 100 the
voltage is 100*4.888mV = 488.8mV. Analogies are the 95% of the
math you will ever need in electronics engineering. In our case a
linear potentiometer will output 2.5V at its middle, no need to do
the calculations it will be 1023/2 = 512 counts reading in our
software.

Using the ADC is simple in the Arduino software. Having done no
setup at our pin (leaving it at its default mode that is input) at any
point in our program we use the command (function)
analogRead(A3); (parameter is A0, A1..A5)

p 171 2.10 Some real Arduino circuits with sensors and displays

So we can write a software project that will read at any time the
potentiometer’s position (primary value: 0-1023) and the button
state (0 or 1). It can then set any LED to any brightness doing light
sequences or anything limited by the imagination (and limited by 3
LEDs). Patience, next chapters will all be about software.

PROJECT #2: AN ENVIRONMENTAL

CONDITIONS CONTROLLER

The project’s mission: to measure environmental conditions and
adjust temperature by automatically turning on and off something
like a heater (not included in our project) as to keep the (measured)
temperature as near to a set value as possible. This can be expanded
easily to controlling humidity or… you name it… We already
included 2 things to control (e.g. a heater and a humidifier). Among
the great variety of sensors we will choose two intentionally for
understanding better the two most common ways of connecting
them. ADC input and I2C. For that mission a simple photo resistor
will be connected to an ADC input and an advanced temperature,
humidity and pressure sensor will be connected to the I2C bus. For
user interaction or interface (UI) we will use a very simple screen
and just two buttons. The purpose is to present more schematic
concepts rather than a super useful and amazing project. Amazing
projects will come out of your head plus there are many in the
internet also. Learning to fish is better than one big dish of tasty fish.
Into our circuit…

p 172 2.10 Some real Arduino circuits with sensors and displays

It should be powered by the Arduino’s DC socket with a 12VDC
supply. That is intentional for driving our relays coils and for
understanding better the NPN or open drain switching capabilities.
Taken from left to the right:

LDR1 is a photoresistor (we mentioned in 1.11) forming
a voltage divider together with R6. In our project it is

intended to detect if there is day or night and if the day is sunny. The
more the light on it the more the LDR resistance drops so makes the
less the voltage on A3 ADC input that the Arduino is going to be
measuring.

IC1 that is the ULN2803 we mentioned in 2.3. Each of its
outputs connects to the Ground or stays floating according
to the logic state on its input, handling up to 500mA of

maximum current and up to about 30V of voltage, enough to drive
12V relays coils (12V coils need around 30mA-100mA each if you
look into datasheets). We used only the 1/4th of it. Alternatively we
might have used relay boards driven directly by the GPIOs. COMD
pin is the common cathode of 8 diodes each connected to each
output protecting them from back-EMF of the coils. That’s the
charm of using low-side or NPN or N-Channel transistors: They
easily switch on-off any level of a voltage as you can see.

p 173 2.10 Some real Arduino circuits with sensors and displays

Up and right we have a BME280 sensor board. It is an I2C
sensor IC measuring pressure (with extreme resolution),
temperature and humidity. We use a 5V board that is “5V
compatible” specifically for the Arduino’s 5V level of

signals.

Next to it is an I2C LCD display, the
simplest perhaps, a character type of
2 lines 16 characters long each. Those
display ASCII symbols. They are of

parallel (4/8 data bits + control signals) or I2C interface. The second
kind is chosen with the PCF8574 chip for doing the I2C to parallel
bus connectivity (or interfacing). Take a glance in the circuit on how
two I2C devices are connected. Of course many more can be
attached on the 2-wire I2C bus provided each has a different I2C
address (the address is a 7-bit number each one has internally for
responding or not to an I2C transaction). The two pull-up resistors
(R4, R5) are needed at every I2C connection since all the pins
connecting to the SDA or SCL are in open-drain configuration.
Some I2C boards contain those so they are not required by us (or
even in this case they are connected in parallel making no harm). In
higher I2C speeds (e.g. 400Kbps) we need smaller resistors (around

2KΩ usually) for faster charging and discharging parasitic
capacitances that form at many places on each of the two I2C wires.

Two circuit making examples:

If schematic is understood, let’s go a step further, into using this
circuit as an example to see two implementation (making)
techniques. At the beginning of chapter 2.4 we mentioned:

From the quickest and “dirtiest” to the more difficult and better performing the most
common and not only ways to go are:

1. Connect header to header with DuPont cables
2. Use breadboards (and cables like DuPont)
3. Solder THT components wire to wire, all hanging “on the air”
4. Use a prototyping PCB to solder THD and some SMD components,

connecting them directly as well as with wires and cables
5. Design a PCB that implements the connections of our circuit, order it and

solder our components on it.

p 174 2.10 Some real Arduino circuits with sensors and displays

Let’s start from #1 (DuPont cables). Unfortunately here the
connections are quite a lot, so we will need the help of #2
(breadboard) as well. As we have already described that technique,
it is a spaghetti recipe. Here is what we cooked:

We used a small breadboard here that just fitted, so components and
wires on it had been a little dense. The circuit worked well, the
advantage of this method is that we can make that spaghetti circuit
in less than 20 minutes, so it is a nice way to check our schematic
design (not in all cases though, like DC/DC regulators, power
circuits, sensitive signals circuits and SMD components).

Skipping #3 (solder all hanging on the air) from the
previous list, going to #4 (prototyping PCB),
grabbing a perforated PCB (pad board) with individual
pads (left), our components, some thin wire, solder

p 175 2.10 Some real Arduino circuits with sensors and displays

and a ton of patience and mood for making things, after a couple of
hours we get to a circuit like this one:

Which is looking great on the top side of the picture, is spaghetti on
the bottom side, but all are soldered and will keep working for ages
even if we move it, shake it or drop it. Its size is also a lot smaller.
In this implementation we made a change as you can see on the
Arduino we used! Arduino NANO is 98% similar to the UNO but
is way more breadboard and prototype-PCB friendly with its male
bottom side pins. (NANO has the same MCU, the same pins except
a couple which are almost never needed and lacks the DC power
“jack” socket).

If those are well and deeply understood, you are quite a good

designer of basic electronics already. 

Let’s move on to the world of information…

p 176 2.11 All right, it’s quite embarrassing to ask: What is REALLY a computer?

2.11 ALL RIGHT, IT’S QUITE EMBARRASSING

TO ASK: WHAT IS REALLY A

COMPUTER?

The more the technology makes its magic, the more computers we
have in our everyday life but the less we feel their presence! In our
MCUs world (embedded electronics) we meet computers inside a
wireless mouse, inside a TV remote control, inside a printer and
about 50 computers inside our car! (Average city car). Computers
with a screen display also have transformed a lot, from a desktop
device to a device in our pocket and on our wrist.

In computer programming that is what we will be talking about from
now on, we should meet a little more the machine (the computer)
we are about to be programming. That chance is given better to us
since we are using small computers in our MCUs, easier to
understand since we are actually a lot “closer to the machine” – the
computer, than we are when working with our PC or smartphone.

A computer is a CPU (Central Processing Unit) and memory. It
uses computer peripherals to interact with the world, but it is not
the peripherals (e.g. the keyboard I am typing at the moment).

Memory stores bits in groups of 8bits (a byte) to 64bits (words) or
even more in modern graphics cards and PC’s (or MACs)
motherboards. Memories have an address bus for selecting the byte
or word, a few pins to control e.g. if the selected one is to be read
or written and a data bus of so many lines as the word’s number of
bits. There are some types of memories, RAM or SRAM, DRAM,
flash, EEPROM, ROM, internal cache SRAM etc. Internally they all
work using an address bus, a data bus and a few control signals.

CPUs are the brain, but let’s see how smart they are (spoiler: they
are really, really damn stupid a lot complex though). Let’s demystify
them. A CPU is a bunch of logic gates which roll from one state to
the next at every clock tick. We have not talked much about logic
gates yet, let’s talk about the NAND gate: When its inputs are all 1
its output goes to 0 otherwise it is 1. The magic is: If you have only
that component, but lots of, some tens or hundreds thousands, you
can make (working too hard to design all their connections) a CPU,

p 177 2.11 All right, it’s quite embarrassing to ask: What is REALLY a computer?

thus a computer! All kinds of logic gates are actually used, they can
make flip-flops that store one bit when the clock signal ticks
(actually rises or falls), compare bytes, add bytes and construct a big
machine that fetches bytes from memory, find out which command
they contain and do that command’s action (execute it). Then go to
the next command and so on, doing that forever. What are those
commands inside the memory forming the program? Is for example
the command “play sound file “xxxx.xxx” among those? Nope. Is
the command “open application xxx” one? Nope. Neither is the
command “transmit xxx data over serial port”. The set of commands
more or less is:

o NOP: No OPeration, just a clock tick delay
o A set of “move” commands that copy a byte’s or word’s content

of an address in memory to somewhere else. Other than
memory, CPUs have a few internal bytes called CPU
registers. Each has its name and is a “quick access” byte or
word of internal memory (not RAM, internal to the CPU
itself). A note here: in MCUs all peripherals’ (GPIOs, UART,
ADC, etc.) bits and bytes for configuring them and reading
their data are called registers, each of those resides at a unique
memory address. So in the case in ICs connecting over I2C or
SPI. Each of their bit or word functionality is explained in their
datasheet.

o Add / subtract two bytes or words
o Multiply / divide (some CPUs do not have those! Addition and

negative numbers can do all math calculations, really!)
o Do logical (called Boolean, will meet them next) operations

(logic gates) AND, OR, XOR between two bytes’ or words’
bits

o Shift a byte’s or word’s content by x bit positions left or right
o Jump to x address (the next command to execute) (normally

the next command to execute is the next command in the
memory)

o Compare two bytes or words (numerically). Jump to x address
if comparison result is ….

o Call x address: That is a jump returning back when the “return”
command is met

p 178 2.11 All right, it’s quite embarrassing to ask: What is REALLY a computer?

And that is all about it! That stupid machine makes a Tesla car drive
itself or implements a game simulating an ultimately realistic 3D
environment. So… we need lots and lots of commands to do useful
stuff and lots of those executing per each second. Here is the world
of programming, beautiful and terrifyingly huge. It takes 100’s
millions of commands to make a smartphone with only one internet
browser app in it. Fortunately we have made other “higher level”
programming languages.

The language the CPU executes is the only real language of a
computer, it is called assembly language or machine language or
op-code or binary code or object code. Actually each machine
language command is a specific number, e.g. NOP might be
number 27, assembly language is an 1-1 representation of the word
“NOP” to the number 27 in order to be “human readable”.

Thankfully we have made programs that process other, better to
the programmer commands, like “open x file” producing the
machine language sequence of commands needed to implement
their functionality. Those are “higher level” programming
languages doing greater things per command (the machine is at
the lowest level, its commands are dummy). At the old days there
was only assembly. Now we have a toolbox of many great languages
of very high level to program a lot easier.

They are divided in two kinds. Compilers and interpreters. A
compiler takes a text file, checks it (textually) all for any syntax
errors, if ok it converts it all to a machine language program that
will function as intended by that x language. We then execute that
“binary code”. In the MCUs world it is transferred from our PC
where the compiler is to our MCU by a serial (UART) port and a
bootloader program in the MCU or directly using a hardware
debugging protocol (JTAG, SWD etc) over a USB dongle. This
downloading involves also writing it to the flash memory, we say
we “flash” the MCU. An MCU resetting after that starts its
execution. The term source code refers to our program in its x
programming language as a text that is written by us. That is human
understandable, and may also carry comments with it. The term
object code refers to the binary code produced. It is terribly

p 179 2.11 All right, it’s quite embarrassing to ask: What is REALLY a computer?

difficult for us humans to understand the object code in the
assembly language in terms of functionality.

Interpreted languages are programs taking a text file containing
our program (at the syntax of the x language) and execute it
command by command. That is they analyze the first command, if
ok they execute it (do the actions it should do), then they analyze
the next command etc. They are way slower since they do this
command analysis for every command at “run time” (usually around
20 times slower) but they are handier. Such languages are Python,
Java, JavaScript, all very-very high level. They also need that
language execution program to fit in an MCU that requires usually
5-20 times the memory of Arduino UNO’s ATmega328.
Historically the first home computers came with a medium level
language interpreter called “Basic”.

That all was about how the machine under the hood is. Let’s move
on to use them in understanding and learning the most important
programming language, C and its extension, C++.

p 180 2.12 C++ introduction for the non-programmer

2.12 C++ INTRODUCTION FOR THE NON-
PROGRAMMER

C++ is a version of C with awfully lots of extensions. C, this one
letter name language was born in 1973 and since it is the de-facto
language for making efficient (fast and small) programs. The biggest
PC operating systems are still written in C. The charm of this
language that makes it never wearing off is that it is low level
(assembly language alike), so the resulting binary code from the
compiler is small and fast if our programs are well structured. It also
offers high level functionality and structured syntax. C++ is only
“high level extensions” keeping all the low level as it is and
compatible to the older C. The majority of the MCUs nowadays
intentionally uses C, not C++, since C++ has the burden to be
around 2 times slower. You cannot be both super functional and
super-fast.

Arduinos have chosen C++ because the 99% of their mission is
to make programming easier. C++ offers a lot of complexity and
with it a lot of easiness in doing things. Arduino IDE hides illusively
about 5 lines of code needed at every program that make it appear
more complex and more tedious. They also present two function
blocks of code to place our commands inside, setup() and loop() and
a wealth of functions doing specific MCU functionality, almost the
easiest possible way (e.g. digitalWrite(pin, state)). You may fall into
the name “Arduino language”. Well, it is not fair to call it a
language, it is C++ with less than 1% of its stuff hidden from you
but existing in the background. Arduino IDE also uses .ino instead
of .cpp filenames for your (source) code, but they are just plain text
files, just as the .cpp files are. Arduino’s IDE programs are called
sketches though they are just C++ programs.

We will start with C’s basic stuff and then go to the extensions the
C++ offers.

Numeric and data types:

There is not one kind of numbers. Since CPU can only handle
integer numbers of constrained bit length (ATmega for example is
8 bits only), there are various kinds according to what we want to

p 181 2.12 C++ introduction for the non-programmer

present numerically, from a single byte (0-255) up to big floating
point types (e.g. 3.14159265359).

In general there are integers divided into signed and unsigned of 8,
16 and 32 bit length (e.g. 8 bit unsigned range from 0 to 255, signed
range from -128 to 127). Remember that 16 bit holds 216 = 65536
values, and 32 bit hold around 4 billion. Besides integers there are
the magic (but slower to calculate) floating point numbers divided
into floats and doubles that is single precision and double precision
respectively. Single precision hold from 3.4x10-38 to 3.4x10+38 or
written in the C language format, 3.4E-38 to 3.4E38 having about
6 “significant” digits e.g. 7.12345E6 might be one such number (the
number 12.3uF could be written 12.3E-6).

Besides numbers there are character types also. How is text stored
and manipulated? Each letter has a unique code called “ASCII” code,
googling “ASCII table” you will find them and they are enough to fit
in one byte (255 such codes). For example “A” is 65. Character types
treat content as characters, we need printing text and manipulating
text often in our programs. Here are all basic types:

o boolean (8 bit) - simple logical true/false
o byte (8 bit) - unsigned number from 0-255
o char (8 bit) - signed number from -128 to 127.
o unsigned char (8 bit) - same as 'byte'; if this is what you're

after, you should use 'byte' instead, for reasons of clarity
o word (16 bit) - unsigned number from 0-65535
o unsigned int (16 bit)- the same as 'word'.
o int (16 bit) - signed number from -32768 to 32767. This is

most commonly used for general purpose variables in
Arduino example code provided with the IDE

o unsigned long (32 bit) - unsigned number from 0-
4,294,967,295. The most common usage of this is to store
the result of the millis() function, which returns the number
of milliseconds the current code has been running

o long (32 bit) - signed number from -2,147,483,648 to
2,147,483,647

o float (32 bit) - signed number from -3.4028235E38 to
3.4028235E38. Takes 4 bytes and usually about 20 times
longer to calculate than using integers.

p 182 2.12 C++ introduction for the non-programmer

Variables:

As in mathematics, variables are entities that contain some kind of a
number, more specifically, a type of a number. Those entities get a
name from us which most helpfully should represent their content.
For example we may name a variable “speed” of type float containing
the speed a car is moving in km/h. Since each variable should have
a specific type, we have to declare its name and its type at some
point (the beginning usually) of our program. Yes, we could be
using only floats but that would take too long to execute in our 8-
bit ATmega328. That is an example of the efficiency a “close to the
machine” language like C provides e.g. when a variable may be just
a counter from 0 to 10 we may use the byte type. In the following
example we will show how a variable is declared (to its name and
type) and how it is used

Code Explanation
int counter = 100;

float diameter;

float perimeter;

void loop()

{

counter = counter - 1;

diameter = 20.2;

perimeter = diameter * 3.1415926;

}

- a new variable
- a new variable
- a new variable

Assignments

Language keywords (commands):

Amazingly they are very few. C has 32, about half of which are
declarations of data types (like “int” for integer) that make no action
C++ has 95 in total (including C’s), most of which are for very
advanced concepts. C is designed in a way that it will seamlessly
“extend” its commands with limitless new made from us or others
using the “function” concept. digitalWrite(pin, state) for example is
a function written by the Arduino team which we use as if it was a
language command. We can write a lot more of our own, our
program is always structured in function blocks and function calls
(execution of a function is done by “calling” the function). In C++
the code structuring is further enhanced by using “objects” made out
of “classes”. We will get to those later. We will also get later to the
commands or keywords of C and a few of C++.

p 183 2.12 C++ introduction for the non-programmer

Language syntax:

To be honest, C and C++ syntax is kind of tedious at some issues,
yet in general it is awesome.

All commands should be ending with a semicolon “;”! That sounds
like a tedious thing but we find it even at very modern languages like
Java and others. You get used to it very quickly. The compiler will
alarm you in case you forget it. We are not using the “;” everywhere
either, you will easily get used to that too.

A great structuring element is the code block that is code
surrounded with “{“ and “}”. Being a structured language makes us
understand complex programs (ours also) more easily. Let’s see as
a dummy example this small part of a program:

update_temperature();

if (temperature > 40.2)

{

 digitalWrite(10,HIGH);

 delay(10000); // delay 10 seconds

update_temperature();

 if (temperature < 39.5)

 {

 serial.println(“OK”);

 }

 digitalWrite(10,LOW);

}

digitalRead(11);

Each code block (inside an opening and closing brace) is purposely
written one tab position to the right. Keeping this way of writing
makes the code blocks and all the program structure more visible.
You should understand what the previous part of a program is doing,
guessing the syntax and function of the “if” command, disregarding
any knowledge about the whole application. The execution of the
code may enter the big “if’s” block or may not, if it does, it may
enter the inner “if’s” code or it may not. Some syntax we should
notice is: “;” is spared to commands (language keywords) followed
by blocks of code such as “if”. Comments of one line just have to
begin with “//”. Multiple line comments have to begin with “/*”
and end with “*/”. Keeping code of each block one position to the
right is called “indenting” and must always be kept even if the
language (the compiler) will not report any error if it is violated.
Last note: All language code is case sensitive! “If” or “IF” will not
work! Temperature and temperature are different variables!

p 184 2.12 C++ introduction for the non-programmer

Functions:

Functions encapsulate functionality that is repeatedly used or they
just isolate some special functionality code. They receive input and
provide a numeric output, hence they have data type. In case we do
not want to output something or “return something” there is a
special data type called “void” that is “nothing” to return. We will
see the syntax and the usefulness through this example:

Code Explanation
void blink(unsigned long time, int pin)

{

digitalWrite(pin, HIGH);

delay(time);

digitalWrite(pin,LOW);

delay(time);

}

int max(int num1, int num2)

{

if (num1 > num2)

{

return num1;

}

else

{

return num2;

}

}

void loop()

{

blink(100,5);

blink(1000,9);

blink(max(200,250),4);

}

- Implementation of a
function called blink,
returning nothing,
taking as parameters two
integer numbers

- Implementation of a
function called max,
returning an integer
number, taking as
parameters two integer
numbers

- A function call
- Another function call
- And another two
function calls

Here we made two functions, the blink() that returns nothing (is a
void function) and the max that returns an integer. Return
command (is a keyword) exits the function code (returns from the
function’s call) while assigning a value as a function’s result. The
number of parameters and their types can be any, even none at all.
Such a function is impended like:

void blink(void)

{

...

...

}

We call this like: blink();

p 185 2.12 C++ introduction for the non-programmer

We have already got used to function calls from using the
digitalWrite(…), delay(..) and the other functions we used so far
from the Arduino library.

A very important aspect is that all code that does actions is
placed inside functions. setup() and loop() where we place our
first code are functions also. Out of functions may only be variable
declarations or some few other declaration mechanisms of the C or
C++ language, nothing that will do some action though. We can say
that C is a heavily “function oriented” language (there is no such term
officially). We are surely constrained to how we have to write our
code, that is very much appreciated though in big programs where
those constrains create a magnificent architecture.

If you feel dazed you are not stupid, C and C++ are moderate to
hard in difficulty to learn but we surely can, and when we do we
will do real hard-core programming. Learning just the 20% of it will
make us 80% creative. Seat back and relax. Read again stuff you did
not understand at first reading.

For recapping let’s put all said in another now functional example.
Using the “Basic I/O” project of chapter 2.10 (a button a
potentiometer and 3 LEDs) let’s make a software project that blinks
all LEDs sequentially when the button is pressed shining at
brightness adjusted by the potentiometer.

p 186 2.12 C++ introduction for the non-programmer

byte brightness;

void blink(int pin, byte duty_cycle) // our blinking function

{

analogWrite (pin, duty_cycle); // PWM

delay(500); // wait doing nothing for half a second

analogWrite (pin, 0); // 0 PWM is off

delay(500);

}

void setup() // this function executes once at startup

{

 pinMode(8, INPUT_PULLUP);

pinMode(9, OUTPUT);

pinMode(10, OUTPUT);

pinMode(11, OUTPUT);

}

void loop() // this function repeats executing forever

{

brightness = analogRead(A3)/4; //0…1023 -> 0…255

if (digitalRead(8) == LOW)//while pressed it connects to ground

{

blink(9, brightness); // calls blink(). Blinks D1 once

blink(10, brightness); // called when previous finishes

blink(11, brightness); // called when previous finishes

}

}

Take your time to realize what this program does (e.g. pressing the
button for 1.5sec, releasing it for 0.5 sec and pressing it again for 2
seconds) and how it is structured at all its details. (Answer: D1
blinks once, D2 blinks once, D3 blinks once and that sequence
repeats one more time without in-between pause)

p 187 2.13 More Arduino programming

2.13 MORE ARDUINO PROGRAMMING

Having told about the structuring, data types and variables, we will
dive deeper to the C and C++ language, always visiting the most
practical places of this big tool-chest. Give your patience to the few
pages of this chapter, the next chapter will be more playful,
consisting of examples. We will cover the basics, this is not a full
language reference.

SYMBOLS FOR NUMERIC OPERATIONS (OPERATORS)

We will see the most useful ones arranged in an array since most are
really simple.

 Regarding the comparison operators, we should mention than in C
and C++ 0 is “false” or “fail”, all other numbers are “true” or
“success”. You will see the TRUE and FALSE values in same

Cate-
gory

Symbol Function Example

N
um

er
ic

 c
al

cu
la

ti
on

 = Assign right to left var = 24;

var1=var2*2;

+ - * /

Add, subtract, multiply,
divide. Note that * and /
happen first, then + and –
happen unless parenthesis are
used

var = 2+4*2;

(result is 10)

(2+4)*2

(result is 12)

N
um

er
ic

co
m

pa
ri

so
n

== Checks if equal if(var1==var2)

!= Checks if different (≠)

< Checks if left is less than right if(var < 10)

<= Checks if less or equal

> Checks if greater than

>= Checks if greater than or equal

A
bb

re
vi

at
io

ns

+=

If we are to write var = var+5
which is common, we may
write var+=5 instead, same
for –= *= /=

var+=5;

++

If we are to write var=var+1
which is common, we may
write var++, same for --.
Imagine what C++ means.

var++;

p 188 2.13 More Arduino programming

programs, they are just equal to 1 and 0 respectively, just as is HIGH
and LOW in pins states.

BOOLEAN LOGIC:

We left that out of digital electronics hardware. It is what logic gates
do. It is very applicable in software only nowadays, so let’s see the
Boolean logic invented by Mr Bool at around 1850. It is about what
one could do in a world of 1s and 0s. It is the most basic and essential
ingredient in CPUs and MCUs hardware (in the chip). There are
some operations we can do in the 0/1 world, the basics are:

In software they apply a lot in true or false logic states (remember,
true is 1, false is 0) e.g. if one result AND another result is true.

They also can apply to individual bits the same way. Operators are:

Input 1 Input 2 AND OR XOR
Single
input

NOT

0 0 0 0 0 0 1

0 1 0 1 1 1 0

1 0 0 1 1

1 1 1 1 0

Category
Sym-
bol

Function Example

Boolean
calculations
for bytes or

words
(applied to

all bits)

&
Calculates the logic AND
of two numbers bit by bit

In binary:

0010 & 1110 equals

0010 or

var = 2&14

|
Calculates the logic OR of
two numbers bit by bit

^
Calculates the logic XOR
of two numbers bit by bit

~
Calculates the logic NOT
of one number bit by bit

byte var;

var = ~15;
//(~00001111)

(result:240)

Boolean
calculations

for two
entities

&&
Calculates AND operation
with inputs what is on its
left and what is on its right

if(var1>20 &&

var1<100)

calculates var1>20

(for true or false)

then var1<100) and

applies AND to results

||
Calculates OR operation
with inputs what is on its
left and what is on its right

(“|” is the symbol

over “\” in keyboards

usually)

!
Reverses (NOT operation)
what is on tis right

if(!(var>10))

p 189 2.13 More Arduino programming

A note: Only when bits in a byte are to be manipulated, it is handy
to use hexadecimal numeric system. Hex digits are 16 (6 more than
decimal system’s 10 digits) going from 0 to F (F=15) as 4 bits go
also from 0 to 15, so memorizing those 16 bit patterns helps
visualizing directly each bit’s value of 4 bits groups. 0x4F for
example (0x is the hexadecimal notation) is same as 1000 1111 in
binary, also same as 4*16 + 15= 79 in our decimal system. Use hex
as less as possible.

BASIC PROGRAM EXECUTION FLOW CONCEPTS

It is clear so far, but let’s repeat it, that a CPU executes only one
command of the program at a time. Multitasking on your PC
happens by letting your CPU execute a program for a little while
(msecs), then another one for a little while, then another, switching
so fast that you are tricked feeling their actions happen concurrently.
An operating system is required for doing this, not the case in
Arduino UNO and most MCU applications. So, while our program
is running (it executes) if we slow down the time we will see that it
executes a particular command, then go to another, then to another,
we can imagine there is an execution point wandering through or
program’s lines or commands. The path it takes follows different
patterns like a circle or loop in the loop() function’s contents. That
is the flow of the execution and it is how the “machine” of our
program works.

Function call: When a function is called, the execution point
jumps to the start of the code in that function. When the return
command is met it returns back to executing the next command
(after the function call command)

if: Takes a condition as input, if it evaluates to true the execution
point goes to the first command inside its code block, otherwise it
jumps to the first command after it

if (var1 > 20 && digitalRead(8) == HIGH)

{

command; // execution goes here if condition is true

command;

….

}

command; // execution goes here if condition is false

p 190 2.13 More Arduino programming

Notice the syntax details, we will see this in many examples (as we
already have)

if-else: Same as if with two blocks of code. Needs not further
explanation other than its syntax:

if (condition)

{

command; // execution goes here if condition is true

command;

…

}

else

{

command; // execution goes here if condition is false

command;

}

So one of these blocks will execute and one will not.

while: It takes a condition in the same syntax as “if”, followed by a
block of code. What is does is, it loops. Looping in programs is the
cyclic re-execution of a part of it. Exactly what while does is:

while (var1 > 20 || digitalRead(8) == HIGH)

{

command; // execution goes here if condition is true

command;

…

} // When execution reaches here it goes back to the while()

command; // execution goes here if condition is false

another example:

var1 = 10;

while (var1 < 15)

{

command;

var1++;

command;

…

}

command;

will loop the while block 5 times leaving var1 equal to 15 at the end.

Programs execution flow must never reach an end, but commands
execute at a rate of about 10 millions per second. The usual way to
make that happen is to place the most of your code inside a while(1)
while! In Arduino programming that is already done for us. loop()
function is in such a forever loop, when it finishes and exits, it is
called again, forever.

for: Like the last example, many times we want some program
portion to loop for x times. “for” command is made for that. A

p 191 2.13 More Arduino programming

variable has to be dedicated to it that will store the counter’s value.
“for” chose a rather complex syntax as to be more generic or have
broader functionality, at its counting mode it is like:

int var1;

for (var1=0; var1<5; var1++)

{ // will execute this block 5 times

command;

command;

…

}

command;

So, inside the “for” parenthesis we meet an initialization then a
comparison then an action per loop. for(;;) is exactly like while(1).

break; command exits the code block of the “while” or “for” upon
its execution, for example:

var1 = 10;

while (1)

{

command;

var1++;

if (var1 > 15)

break;

command;

….

}

command; //after execution of break execution point jumps here

Note that “if”, “else”, “while”, “for” command’s block of code can
also be one command only. In that case we may spare (optionally)
the braces since a block of code acts in the syntax as grouping its
commands into one. Nice to use indentation even to that solo
command since it belongs to the “if”.

We are at about the 80% of the usefulness of the C / C++
commands that do actions (not declarations). We will stop here.

STRUCTURES AND ARRAYS

We will speak about those only in very sort, up to the 20% of their
knowledge, just to get you into the spirit.

In many cases of bigger programs we have a lot of data thus a lot of
variables. Structures are super-variables that contain other variables.
In a program for example that is a game of moving cars we may make
a “car” structure containing variables such as speed, km_covered,
direction, lights_state,…. That structure will work as a variable

p 192 2.13 More Arduino programming

type making it then easy to create a lot of car type variables each
with its own data. We call each of those an instance of the structure.
Having made instances we access each of their member using a dot
like:

car2.speed = 24;

Arrays or tables are more common in use, especially the one-
dimensional arrays. If for instance we measure an ADC input every
second and we need to keep the last 100 measurements somewhere,
making 100 variables should be terrible. We can make the array

int value[110];

that will provide 110 int variables (just a few more than needed to
be sure our data will fit) accessed as:

value[0] for the first one, value[1] for the second, …. value[109]
for the 110th. A variable of ours can be used to choose which one to
use, or be the index of the array. Accessing value[110] or any higher
index makes our cars and our program crash.

CLASSES AND OBJECT ORIENTED PROGRAMMING

C++ is actually the addition of object oriented programming in C.
OOP is indented to hugely assist programming structuring, the
bigger the program is. Well… in practice it finds it’s meaning in
programs bigger than 1000 lines. Arduino, having built its house on
the foundations of C++ caries both its advantages and its
complexity. In very sort here is the objects story:

A class is a “mold” producing objects. Classes are similar to variable
structures with additions, one of which is that they also contain
functions, thus code. That makes them like autonomous programs
themselves. In our cars game, using classes enables us to add
functionality to the car structure, so an object could also do:

car2.accelerate(10);

if (car2.speed > car3.speed)

…

Lets leave OOP here, it is about 3 times more lengthy knowledge
than all C language’s knowledge. You should just know that in dots
there is a class behind and an already made for us object. A great
portion of Arduino libraries is made that way.

p 193 2.13 More Arduino programming

SERIAL COMMUNICATION

This is crazily too useful. It is your door (the only one in Arduinos)
to get yourself inside the data of your program and your MCU in
general. It is about the Arduino’s UART communication with a
“UART over USB” on your computer, fortunately in Arduino UNO
and others there is one “UART over USB” already on your Arduino
board. Let’s leave a picture to tell the most of the serial
communication story. Read the program in there also.

“Serial” is an object already created waiting for us to use it.
Serial.println() function prints its parameter as text followed by an
“Enter key pressing” to go to a new line. There are more function
members of this class, also for reading from your UART if you send
information over the serial monitor or from another application or
any UART, like receiving data from a GPS device for example.

The serial monitor (or other serial terminal applications as well)
have a great value on debugging your program.

The Serial

monitor

Serial monitor

Serial monitor
port set (by

Tools menu 

port)

Baud rate has to
be set the same in

our MCUs

UART

p 194 2.13 More Arduino programming

DEBUGGING YOUR PROGRAM

Assume you made a mistake somewhere in your program and you
notice it behaves oddly. The mistake is called bug,
debugging is what you need to do. That is a case
happening once every a few minutes when you are

developing software. In order to find out what is wrong you need to
see some data at some point of the execution. Same case is when you
have made a small portion of your whole program and need to see
if it does its job well. The way to do this with the Arduinos is to send
information to the Serial Monitor over the UART in the fashion we
did on the previous picture. (The story of the bug sort: In a 40’s
pioneering electro-mechanical kind of computer / calculator
weighing 25 tons, trying to find why some calculation results were
wrong they finally found a relay stuck by a small butterfly what made
it its nest! A real story of hard times in the early computer history.)

STRINGS (TEXT MANIPULATION)

String in programming is not a piece of thread and it is not the sexy
lingerie either. It is a “cord” of characters, actually a character array
in C that contains text. Text therefor is char type arrays, ending with
a zero (null-terminated). Lately there is an easier to learn and handle
library called string (it is a class). It is better not to dive into details
here, just giving you a picture and some titles.

SCOPE

Each variable may not be accessible at all parts of our program. The
rules are simple. If it is created within a block of code (functions’
body, inside a for, a while etc) it is not “visible” outside of it. When
the execution exits it’s block of code it automatically “dies”, it
disappears and the information of its value is forever lost, unless it
is declared with the extra keyword “static”. You may meet variables
defined (created) inside code blocks (like in our last program for the
serial example). It is preferred to do that outside of all blocks in
simple programs. Creating variables inside loop() especially involves
a trap. loop() actually exits when its last “}” is met and then it is
called again. That resets any variables created within it.

p 195 2.13 More Arduino programming

THE INFORMATION NOT COVERED YET

An awesome place to find any further information to almost all its
specifics is in the great arduino.cc web site, at the Arduino reference
page. Just “google” arduino reference. 10000% recommended.

Check Libraries
as well

p 196 2.14 A few simple programs to play with

2.14 A FEW SIMPLE PROGRAMS TO PLAY WITH

It’s time to apply all this theory to practice. We will also seize the
opportunity to add-up just a few more Arduino software related
knowledge. To get used to programming or to a new language you
need examples and mostly the joyful feeling “let’s play”. Here we
go, step by step. Take time to read all those programs at their finest
details, picture in you head all they do and imagine tampering them.
To learn programming you need to have fun with it and make it the
purpose, not the means to achieve the purpose. Experience tells you
can never be great at something if you don’t like or love it. Such
feelings may develop only by “doing”, now you are in the “reading”
phase.

For hardware we will be using the project#2 of 2.10:

p 197 2.14 A few simple programs to play with

A MORE ADVANCED “BLINKY”

In all programming languages it is a tradition to introduce for the
first and simplest program one that prints on the screen the text
“Hello world!”. In MCUs that first and simplest program
traditionally is the blinking of an LED or just the periodic toggling
of a GPIO. In our case we already have seen that. Let’s see it again
using an LED we do not have to connect, it is already placed on the
Arduino UNO board, connected internally to the GPIO 13 as you
can see on its schematic (in 2.9). So this program functions with
nothing connected to our UNO.

Here it is:

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop()

{

digitalWrite(LED_BUILTIN, HIGH); // turn the LED on

delay(1000); // wait for a second

digitalWrite(LED_BUILTIN, LOW); // turn the LED off

delay(1000); // wait for a second

}

LED_BUILTIN equals to 13. This is set inside the Arduino libraries
using the command: (we have to open a specific file to see that)

#define LED_BUILTIN 13

 If e.g. we use at the beginning of our program (out of all functions):

#define ANSWER_FOR_EVERYTHING 42

At any place we use ANSWER_FOR_EVERYTHING the language will
replace it with 42. The use is to change all those 42 values used at
many places changing only one at the beginning. “#” starting
commands are commands of a text-preprocessor needing no “;” at
the end. Later on we will see another one, the #include

That simple and good looking program has this problem: for each
whole second of time the function delay() is executing, the MCU
does nothing else, and usually that is bad since actually our program
“freezes” for that time. loop() loops once every 2 seconds.

p 198 2.14 A few simple programs to play with

The following program loops its loop() function many thousand
times per second, doing the same action on the LED.

unsigned long time_LED_toggle; //initial value is zero

byte LED_state; //initial value is zero

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop()

{

 if (millis() – time_LED_toggle > 1000)

 {

 if (LED_state == 0) // LED was OFF

 {

 digitalWrite(LED_BUILTIN, HIGH);

 LED_state = 1;

 }

 else // LED was ON

 {

 digitalWrite(LED_BUILTIN, LOW);

 LED_state = 0;

 }

 time_LED_toggle = millis();

 }

 // we can add more code after here doing other things

 // ...

 // ...

}

millis() returns the time in milliseconds since program start. The
technique is to measure time and according to “how
much time has passed” to decide if actions will be taken.
Each C++ command or call of a simple function like the ones used
here, usually takes less than 100 clock ticks of our MCU’s clock to
execute. In the kind of slow MCU of Arduino UNO, clocked at
16MHz, that time is around 6usecs or around 150,000 such
instructions per second. Getting inside the “if” or not, the execution
point passes really fast through all the LED handling procedure.
Take some time to understand it to the last detail. A note for those

more advanced in programming: If someone wonders about what
happens when the 32 bits unsigned long type of millis()
function overflows (wraps to zero when filled over the value

232=4294967296 after 4294967.296 seconds that is 49.7 days),

p 199 2.14 A few simple programs to play with

subtraction of numbers treated as unsigned 32 bit integers in that program
will not even produce the slightest glitch. A version like:
if (millis()>time_LED_toggled+1000) would be buggy in that matter.

In programming it is very seldom to have only one way of achieving
a goal. The previous program was intended to present a very
commonly used method. You may imagine others also. One might
be to turn the LED on if the modulus (the remainder of the division)
of the millis() to the number 2000 is less than 1000, off otherwise
(In C, that calculation operator is the “%” or millis() % 2000). Last,
there are many ways to implement a specific method, all you have
to do is test the code you write in your Arduino to see how well it
works. The method taken to implement a functionality or solve a
problem (e.g. we will act according to what time it is now and do
that or that) is also called algorithm. Program structuring for
implementing a method (e.g. encapsulate our code inside a new
function) is not an algorithm, it is just coding practices or code
structuring.

UP AND DOWN WITH TWO BUTTONS

The mission: The user will adjust a setting temperature using the up
(pin 12) and down (pin 10) buttons. Before displaying that
adjustable setting on the screen we should calculate it properly
(according to buttons actions) as the value of a variable. Using a
variable for this purpose is 100% correct and the only way to do it.
So, before starting to play with the screen lets prepare our internal
data.

Variables should have a proper name to make us and others
understand what they contain. Don’t use a name “t” for this, let’s
name it temperature_set choosing float type since it is common to
have fractions of a degree. Let’s work on Celsius units only.

Until we setup our LCD screen we will use the classic method to
see a variable’s value, live, while our program is executing. The
serial monitor. Serial.println(temperature_set); will execute
many times per second in the loop()’s loop.

Using an algorithm like “if button is up wait forever (checking its
state) until it goes down, when that happens do something” should

p 200 2.14 A few simple programs to play with

block all our program and the functioning of the other button. Here
is one of the many ways to do this job along with the LED blinking:

unsigned long time_LED_toggle; //initial value is zero

byte LED_state; //initial value is zero

float temperature_set = 25.0; //initial value

byte button_up_previous; // the previous state (0 or 1)

byte button_up_pin = 12; // for easier moving to other pin

byte button_down_previous; // the previous state (0 or 1)

byte button_down_pin = 10; // for easier moving to other pin

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT);

 pinMode(button_up_pin, INPUT_PULLUP);

 pinMode(button_down_pin, INPUT_PULLUP);

 Serial.begin(115200);

 // Initialize the buttons' previous states

 button_up_previous = digitalRead(button_up_pin);

 button_down_previous = digitalRead(button_down_pin);

}

void loop()

{

 // LED blinking

 if (millis() - time_LED_toggle > 1000)

 {

 if (LED_state == 0) // LED was OFF

 {

 digitalWrite(LED_BUILTIN, HIGH);

 LED_state = 1;

 }

 else // LED was ON

 {

 digitalWrite(LED_BUILTIN, LOW);

 LED_state = 0;

 }

 time_LED_toggle = millis();

 }

 // temperature_set by buttons

 if (button_up_previous==HIGH && digitalRead(button_up_pin)==LOW)

 {

 /* up button just pressed

 (remember volatge is 5V when unpressed, 0V when pressed)*/

 temperature_set += 0.5; // the increment at each button press

 }

 if (button_down_previous==HIGH && digitalRead(button_down_pin)==LOW)

 {

 // down button just pressed

 temperature_set -= 0.5; // the decrement at each button press

 }

 button_up_previous = digitalRead(button_up_pin);

 button_down_previous = digitalRead(button_down_pin);

 // we can add more code after here doing other things

 Serial.println(temperature_set);

}

Take all the time to read this over and over and understand its
method. Comments help greatly for this by explanations inside the

p 201 2.14 A few simple programs to play with

code. We have actually introduced 5 new variables, 3 necessary and
2 optional for greater flexibility. The concept is that we store at the
proper place of the execution point’s looping the previous or
historic state and that enables us to detect when a change has
occurred. We detect the “pushing event” of the button that is the
falling edge of the GPIO’s input reading (internal pull-up resistor
makes it 1 while not pressed and 0 while pressed) and act only then.

INTERRUPTS

Another way to do this kind of functionality is using interrupts. In a
nutshell, interrupts are a hardware mechanism of MCUs that
automatically call pre-defined functions (interrupt service routines,
ISRs) on the happening of an event. Since the happening of the event
is checked by hardware, our program will jump to service that no
matter what it does (where its execution point is) at that moment
(delaying around 1-3 CPU clock ticks only!). Using interrupts is
more complex. It tends to unleash a swarm of bugs to eat our
program if we are not well educated about them. Interrupt receiving
GPIO pins are only pins 2 and 3 on UNO, capable to “listening” to
rising or falling edge or both, if configured. Keep them in your mind
for monitoring events changing faster that key presses, where we
must not miss any. Even changing to those pins and using interrupts in
our case, other problems occur, such as “key bouncing” that is, you may press
the button once, but electrical noise when the two metals of the switch just
start touching each other and the extremely fast responding of interrupts
makes our program think we pressed it 1 to 10 times in a row (a random
count of repetitions).

LIBRARIES

Moving on we must grab more tools from a tool chest called
“Arduino libraries”. This is about integrating pieces of code into one
program, pieces either ours or written by others.

C and C++ programs span on multiple files. That is for a great list
of reasons, such as, scrolling up and down a program of 1 million
lines should be a headache, code is better organized by this
encapsulation by separating into files, files are included in our

p 202 2.14 A few simple programs to play with

program easily. Arduino framework is a bunch of C/C++ files
(more than 20!) silently included in our code. In those is the
implementation of the digitalRead() function for example, the
delay(), millis() and all other functions we have been using so far.
Adding functions, classes and other C++ goodies, written by great
people who give them for free or written from ourselves we expand
the repertoire of functionality. The flow of the execution point of
our program is driven only by us, we may call some of those
functions, we may not, as it fits.

We will soon need the functionality of a character LCD screen
controlled over the I2C bus. In order to set it up and only to print
on it the letter “A” the code is more than 50-100 lines handling all
internals of the LCD controller and an I2C interface chip. The
datasheets of both are around 50 pages to read. Also we should read
the datasheet section of the MCU’s I2C peripheral and do all the
setup it requires by tempering registers bits. Here is the “Arduino”
way:

Step 1: Find our great library and fetch it from the internet.

In our case for driving our screen (literally it is a “driver” but not in
an operating system), we do the following:

Type i2c lcd

Hit “Install”

Chose this one

Documentation
is found here

p 203 2.14 A few simple programs to play with

Step 2: Include it in our program: We go to sketch menu and
choose it from the list of
libraries. That will only add
at the beginning of our
program the pre-processor
command:
#include <FaBoLCD_PCF8574.h>

Where FaBoLCD_PCF8574.h
is a filename. C++ files are
of two types, headers

ending in .h and sources ending in .cpp (.c for C). Header files are
designed to be included with the #include command. Having done
that we have all that library’s classes and functions available to use.
A final notice is that if we want to give our program to somebody
else, we have to do the same procedure on her/his computer or
copy the library folder from our “sketchbook location” folder to hers
/ his. That folder’s location is set in the “preferences” of the “file”
IDE’s menu. In general Arduino IDE tries to involve you with C++
matters as less as possible in order for a beginner to feel the
creativity joy ASAP. That is good but after a few projects you have
to dig deeper to go on. Let’s use this library…

DISPLAYING ON AN I2C SCREEN

Here is the code that displays the live value of temperature_set on
the second line of the screen:

#include <FaBoLCD_PCF8574.h>

/* Create lcd object out of the FaBoLCD_PCF8574 class

using an initializing parameter that is the I2C address

If your PCF8574 I2C LCD does not work, it might be set

to different address. Google arduino i2c address scanner

Try also to turn the onboard trimmer that sets the contrast*/

FaBoLCD_PCF8574 lcd(0x3F);
unsigned long time_LED_toggle; //initial value is zero

byte LED_state; //initial value is zero

float temperature_set = 25.0; //initial value

byte button_up_previous; // the previous state (0 or 1)

byte button_up_pin = 12; // for easier moving to other pin

byte button_down_previous; // the previous state (0 or 1)

byte button_down_pin = 10; // for easier moving to other pin

void setup()

{
 pinMode(LED_BUILTIN, OUTPUT);

 pinMode(button_up_pin, INPUT_PULLUP);

 pinMode(button_down_pin, INPUT_PULLUP);

 Serial.begin(115200);

 // Initialize the buttons' previous states

p 204 2.14 A few simple programs to play with

 button_up_previous = digitalRead(button_up_pin);

 button_down_previous = digitalRead(button_down_pin);

 // LCD setup

 lcd.begin(16, 2);

}

void loop()

{
 // LED blinking

 if (millis() - time_LED_toggle > 1000)

 {

 if (LED_state == 0) // LED was OFF

 {

 digitalWrite(LED_BUILTIN, HIGH);

 LED_state = 1;

 }

 else // LED was ON

 {

 digitalWrite(LED_BUILTIN, LOW);

 LED_state = 0;

 }

 time_LED_toggle = millis();

 }

 // temperature_set by buttons

 if (button_up_previous==HIGH && digitalRead(button_up_pin)==LOW)

 {

 /* up button just pressed

 (remember volatge is 5V when unpressed, 0V when pressed)*/

 temperature_set += 0.5; // the increment at each button press

 }

 if (button_down_previous==HIGH && digitalRead(button_down_pin)==LOW)

 {

 // down button just pressed

 temperature_set -= 0.5; // the decrement at each button press

 }

 button_up_previous = digitalRead(button_up_pin);

 button_down_previous = digitalRead(button_down_pin);

 Serial.println(temperature_set);

 lcd.setCursor(0,1);

 lcd.print("Set point: ");

 lcd.print(temperature_set, 1);

 lcd.print("C");

}

Each library has its own set of functions generally called Application
Programming Interface or API, like the Arduino has in all the
inherent functions we are already using. Our programs have a
hidden #include <Arduino.h> in them. Documentation of each API
is found on the library’s code repository (in “github”) and on web
sites if any. Last resort is to read a little bit the .h and the .cpp files
of their source code. Note that making the above program without
the benefit of an open-source well working library, it should take to
write an equivalent of the FaBoLCD_PCF8574.cpp yourself that is
extra 300 lines of quite complex code.

READING AN I2C SENSOR

Likewise, we are going to include the library SparkFun_BME280_
Arduino_Library searching for sparkfun BME280 in our library

p 205 2.14 A few simple programs to play with

manager. Here is one of the many ways to read the temperature and
humidity:

#include <SparkFunBME280.h>
#include <FaBoLCD_PCF8574.h>

BME280 myBME280; // Create an object out of BME280 class

float temperature;

float humidity;
/* Create lcd object out of the FaBoLCD_PCF8574 class

using an initializing parameter that is the I2C address

If your PCF8574 I2C LCD does not work, it might be set

to different address. Google arduino i2c address scanner

Try also to turn the onboard trimmer that sets the contrast*/

FaBoLCD_PCF8574 lcd(0x3F);

unsigned long time_LED_toggle; //initial value is zero

byte LED_state; //initial value is zero

float temperature_set = 25.0; //initial value

byte button_up_previous; // the previous state (0 or 1)

byte button_up_pin = 12; // for easier moving to other pin

byte button_down_previous; // the previous state (0 or 1)

byte button_down_pin = 10; // for easier moving to other pin

void setup()

{
 pinMode(LED_BUILTIN, OUTPUT);

 pinMode(button_up_pin, INPUT_PULLUP);

 pinMode(button_down_pin, INPUT_PULLUP);

 Serial.begin(115200);

 // Initialize the buttons' previous states

 button_up_previous = digitalRead(button_up_pin);

 button_down_previous = digitalRead(button_down_pin);

 // LCD setup

 lcd.begin(16, 2);

 // BME280 setup

 myBME280.setI2CAddress(0x76); // Try address 0x77 if next check fails

 // next the function myBME280.beginI2C() is called and its result is checked

 if (myBME280.beginI2C() == false) //Begin communication over I2C

 {

 Serial.println("The sensor did not respond. Please check wiring.");

 while(1); //Freeze

 }

}

void loop()
{

 // LED blinking

 if (millis() - time_LED_toggle > 1000)

 {

 if (LED_state == 0) // LED was OFF

 {

 digitalWrite(LED_BUILTIN, HIGH);

 LED_state = 1;

 }

 else // LED was ON

 {

 digitalWrite(LED_BUILTIN, LOW);

 LED_state = 0;

 }

 time_LED_toggle = millis();

 }

 // temperature_set by buttons

 if (button_up_previous==HIGH && digitalRead(button_up_pin)==LOW)

 {

 /* up button just pressed

 (remember volatge is 5V when unpressed, 0V when pressed)*/

 temperature_set += 0.5; // the increment at each button press

 }

 if (button_down_previous==HIGH && digitalRead(button_down_pin)==LOW)

 {

 // down button just pressed

 temperature_set -= 0.5; // the decrement at each button press

 }

 button_up_previous = digitalRead(button_up_pin);

 button_down_previous = digitalRead(button_down_pin);

 Serial.println(temperature_set);

 lcd.setCursor(0,1);

 lcd.print("Set point: ");

p 206 2.14 A few simple programs to play with

 lcd.print(temperature_set, 1);

 lcd.print("C");

 temperature = myBME280.readTempC(); //see examples in library's

documentation

 humidity = myBME280.readFloatHumidity(); // we may also read pressure
and altitude

 lcd.setCursor(0,0);

 lcd.print("T:");

 lcd.print(temperature,2);

 lcd.print("C RH:");

 lcd.print(humidity,0);

 lcd.print("%");

}

Our code is a long train… let’s organize it better.

A LITTLE CODE CLEANUP

The better the code structuring the less bugs we make, the quicker
and happier we program. “Code refactoring” is also coined to
converting a messy code to a cleaner one. We will only use functions
here. Note that many coders take this organizing very far, making
code 2 or 10 times as big for the sake of structuring, generalization
and expandability. When you know where your project’s
functionality will end it is good not to stretch the expandability of
your code (in terms of structuring) way far over that. A messy
spaghetti code is worse of course.

We will just lighten the loop()’s lengthy code.

#include <SparkFunBME280.h>

#include <FaBoLCD_PCF8574.h>

BME280 myBME280; // Create an object out of BME280 class

float temperature;

float humidity;

/* Create lcd object out of the FaBoLCD_PCF8574 class

using an initializing parameter that is the I2C address

If your PCF8574 I2C LCD does not work, it might be set

to different address. Google arduino i2c address scanner

Try also to turn the onboard trimmer that sets the contrast*/

FaBoLCD_PCF8574 lcd(0x3F);

unsigned long time_LED_toggle; //initial value is zero

byte LED_state; //initial value is zero

float temperature_set = 25.0; //initial value

byte button_up_previous; // the previous state (0 or 1)

byte button_up_pin = 12; // for easier moving to other pin

byte button_down_previous; // the previous state (0 or 1)

byte button_down_pin = 10; // for easier moving to other pin

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT);

 pinMode(button_up_pin, INPUT_PULLUP);

 pinMode(button_down_pin, INPUT_PULLUP);

 Serial.begin(115200);

 // Initialize the buttons' previous states

 button_up_previous = digitalRead(button_up_pin);

p 207 2.14 A few simple programs to play with

 button_down_previous = digitalRead(button_down_pin);

 // LCD setup

 lcd.begin(16, 2);

 // BME280 setup

 myBME280.setI2CAddress(0x76); // Try address 0x77 if next check fails

 // next the function myBME280.beginI2C() is called and its result is checked

 if (myBME280.beginI2C() == false) //Begin communication over I2C

 {

 Serial.println("The sensor did not respond. Please check wiring.");

 while(1); //Freeze

 }

}

void loop()

{

 LED_blink(); // LED control

 buttons_handler(); // temperature_set up-down using buttons

 // measure

 temperature = myBME280.readTempC(); // see examples in library's documentation

 humidity = myBME280.readFloatHumidity();//we may also read pressure and altitude

 LCD_update(); // update content of LCD

}

//

// LED control

void LED_blink(void)

{

 // LED blinking

 if (millis() - time_LED_toggle > 1000)

 {

 if (LED_state == 0) // LED was OFF

 {

 digitalWrite(LED_BUILTIN, HIGH);

 LED_state = 1;

 }

 else // LED was ON

 {

 digitalWrite(LED_BUILTIN, LOW);

 LED_state = 0;

 }

 time_LED_toggle = millis();

 }

}

// temperature_set up-down using buttons

void buttons_handler(void)

{

 // temperature_set by buttons

 if (button_up_previous==HIGH&&digitalRead(button_up_pin)==LOW)

 {

 /* up button just pressed

 (remember volatge is 5V when unpressed, 0V when pressed)*/

 temperature_set += 0.5; // the increment at each button press

 }

 if (button_down_previous==HIGH&&digitalRead(button_down_pin)==LOW)

 {

 // down button just pressed

 temperature_set -= 0.5; // the decrement at each button press

 }

 button_up_previous = digitalRead(button_up_pin);

 button_down_previous = digitalRead(button_down_pin);

 Serial.println(temperature_set);

}

p 208 2.14 A few simple programs to play with

// update content of LCD

void LCD_update(void)

{

 lcd.setCursor(0,1);

 lcd.print("Set point: ");

 lcd.print(temperature_set, 1);

 lcd.print("C");

 lcd.setCursor(0,0);

 lcd.print("T:");

 lcd.print(temperature,2);

 lcd.print("C RH:");

 lcd.print(humidity,0);

 lcd.print("%");

}

Read it through once again. See how much better the loop() looks
like.

A note for people knowing C++ language: To be correct in C/C++
language, our program should begin like:
#include “Arduino.h”

void LED_blink(void);

void buttons_handler(void);

void LCD_update(void);

 Arduino IDE does this for us automatically. This is almost all the difference
of the so called “Arduino language” to C/C++ language

STORING DATA PERMANENTLY

You should notice that Arduino stores no data when you turn it off.
That is the problem of the RAM memory that is whipped out when
left with no power. Flash memories hold their content practically
forever. So your program can use a portion of the MCU’s flash
(32KB on ATMega328) to store stuff like the temperature_set’s
value. That is 4 bytes (the data size of a float).

Here are the engineering constrains on that:

 Flash is divided into “pages” (128 bytes each on
ATMega328). Changing even one bit requires to erase a
whole page and re-write it.

 Writing a page in the flash takes some time (msecs) while
MCU freezes its operation.

 Unfortunately Flash memory cannot be written many
times. It wears off and becomes un-reliable after about
10000 recordings (referred individually to each page).

p 209 2.14 A few simple programs to play with

Fortunately we will not flash our AVR so many times with
new program (fixing code retries) into it. That is a
guaranteed limit, writing 10001 times should have a chance
like 0.0001% to start malfunctioning. Datasheet on first
page highlights: “Write/Erase Cycles: 10,000
Flash/100,000 EEPROM”

What is EEPROM? ATMega328 has 1Kbyte of it. It stands for
Electrically Erasable Programmable Read Only Memory and can be
written byte by byte. There is a library for it, the EEPROM library
that you can find in the “sketch”  “Include library” menu without
fetching it from the internet. That, like all the others which are
already there are the “internal Arduino libraries” which you
can read about in the reference page of Arduino. Arduino.cc web
site is awesome there! Usage can be as easy as:

EEPROM.put(0,temperature_set); for recording (library takes care
to write only if data is different, so not wasting the 100,000
recording cycles and EEPROM.get(0,temperature_set); for reading
it.

THE CONTROL, THE REAL APPLICATION

The coding of MCU projects usually has this paradox: The real
algorithm of it may be as little as 2 to 20 lines while all the project
may be over 200 lines for providing user interaction, setup,
communication, etc. Counting all the libraries code underneath,
that ratio gets actually terrible. Let’s get into the heart of this
project, its real “control” part or “application” part.

Purposely we will keep a little vague or configurable by you what
this circuit actually does since we learn fishing, not serving one fish
dish only. For this let’s only deal now with it being a thermostat,
that is do what most heating devices in your house do: heat up until
temperature reaches a set point, target reached, stop heating, if
temperature drops under a point, re-start heating and forever loop.
Let’s also blink the LED while the temperature has not reached its
set point yet (is not near it) and keep it always on while it is there.
We will be turning relay K1 on when we need to heat it up, off
when we do not need to stop heating.

p 210 2.14 A few simple programs to play with

A quite easy way to do that is the following. We will present only
loop() here, in the rest of the program we have only added
pinMode(7, OUTPUT); in setup().

 pinMode(7, OUTPUT);

}

void loop()

{

 buttons_handler(); // temperature_set up-down using buttons

 // measure

 temperature = myBME280.readTempC();

 humidity = myBME280.readFloatHumidity();

 LCD_update(); // update content of LCD

 if (temperature < temperature_set)

 {

 // We have to heat up. Turn ON relay K1 on pin 7

 digitalWrite(7, HIGH);

 LED_blink(); // LED control

 }

 else

 {

 // Temperuture high enough. Turn OFF relay K1 on pin 7

 digitalWrite(7, LOW);

 // keep LED on

 digitalWrite(LED_BUILTIN, HIGH);

 LED_state = 1;

 }

}

Finally we will make our thermostat a little better, working like the
“stupid” mechanical thermostats work:

p 211 2.14 A few simple programs to play with

void loop()

{

 buttons_handler(); // temperature_set up-down using buttons

 // measure

 temperature = myBME280.readTempC();

 humidity = myBME280.readFloatHumidity();

 LCD_update(); // update content of LCD

 if (temperature > temperature_set + 0.5)

 {

 // Temperuture high enough. Turn OFF relay K1 on pin 7

 digitalWrite(7, LOW);

 }

 if (temperature < temperature_set - 0.5)

 {

 // We have to heat up. Turn ON relay K1 on pin 7

 digitalWrite(7, HIGH);

 }

 // blink the LED accordingly

 if (temperature < temperature_set)

 {

 LED_blink();

 }

 else

 {

 digitalWrite(LED_BUILTIN, HIGH);

 LED_state = 1;

 }

}

On the left we see
what the two first 2
ifs do. The feature
is called hysteresis.
It solves the
problem of
switching the K1
relay on and off
rapidly while the

measured temperature is equal to the set temperature but the
temperature’s measurement noise makes K1 to “jitter”. Do not say
to yourself “oh, that is difficult to think and make”. I made myself 5
tries to make it work. You have the luxury to experiment
indefinitely, there is no software development “on paper”.

ON ON
OFF

p 212 2.15 Wireless communications and Internet engineering

2.15 WIRELESS COMMUNICATIONS AND

INTERNET ENGINEERING

WIRELESS COMMUNICATION

We all wish we had a world without wires, but that is never going
to happen since wires also carry the supply voltage. But it is nice to
have a few remotely operating devices connecting to our phone or
communicating with each other wirelessly. Here is where the
technology, in low cost and practical applications, is at the moment:

Frequencies: Unfortunately the 99% of the frequencies are
reserved for commercial (e.g. cellular telephony, TV, radio, etc)
government, avionics, military and other uses. There are 3 major
free bands: 433MHz (1.74 MHz bandwidth), 868 MHz (Europe),
915 MHz (America) (26MHz bandwidth) and the most common
since it is used by WiFi and Bluetooth 2.4GHz-2.5GHz.
Transmission on those frequencies is also limited in power and in
duration (reasonable use makes them available to all).

Range: The range of communication is usually around 50 meters
and in some rare cases of amplified devices it can go up to around
1Km in open field. Lately there are some ultra-long multi-Km range
protocols like “Lora” but offer very low bit-rate in data throughput.
The higher the frequency the more is the attenuation of the signal
by obstacles such as buildings walls, even human bodies. “Line of
site” range is usually 3 -10 times greater than indoors range. You
will meet the term (xx)db (decibels) of transmitting power, (xx)db
of receiver sensitivity. Their total (counting RX dbs as positive)
makes the “link budget”. Around 100dbs link budget at 2.4GHz
makes 100m outdoor line of site range, doubling for every 6 dbs
higher that it gets (e.g. 118dbs is about 100x2x2x2m=800m range),
those said in great approximation.

Protocols: Two wireless devices need to be on the same frequency
and “speak” the same communication protocol in order to “talk” with
each other. Mostly known protocols are WiFi and Bluetooth (classic
and low energy called BLE), other less known are Zigbee, z-wave,
Ant, Lora and many other proprietary of various manufacturers used
only by specific chips. Speaking of protocols, we assume data is

p 213 2.15 Wireless communications and Internet engineering

exchanged, so MCUs are in the loop. Almost all such protocols are
bi-directional, one can both send and receive. That way they usually
acknowledge if each transmitted packet of information has been
received well by the other side. Each protocol offers different
functionality, data throughput and power consumption.

Wireless transceiver ICs: The word transceiver comes from the
abbreviation of transmitter/receiver. Most of those communicate
over SPI protocol with any MCU and handle all the functionality to
transmit and receive radio waves. That is also called the “RF
section”, RF for Radio Frequencies. Others, especially using
Bluetooth or WiFi include an MCU inside them.

Antennas: The higher the frequency the smaller the Antenna.
Either small ceramic material antennas are used or no-cost antennas
formed by is a trace of PCB with a geometry that tunes to the
frequency, called PCB antennas. They occupy about 1cm x 2cm
PCB area in 2.4HGz. External antennas 10-20cm long are also used
but in practice very rarely. Any material placed near an antenna
drops the signal a lot (at less than 1cm especially even non-
conductive materials like PCBs or plastics make a nasty effect).

Notable RF transceiver ICs:

o NRF24L01+: One of the oldest (but still very good) on the
market transceiver chips by a Norway company
called Nordic. Needs 3.3V to 5V converter for
Arduino. Make your research about fake NRF

chips on the market. NRF24L01+ with “PA+LNA” offers real
1Km range. Cost of the standard (about 50m range) is around
0.7$!

o ESP8266 based boards like the “NodeMCU”: Choose ones with
lithium battery input socket. We have
already described the unbelievable MCU’s
capabilities for about 2$ cost. WiFi is

functioning awesomely offering an unbelievably long range.
o ESP32 based boards with most notable the ESP32 development

kit or others with lithium battery input
socket: We have already described the
unbelievable MCU’s capabilities for about 4$

cost.

p 214 2.15 Wireless communications and Internet engineering

o UART over Bluetooth modules: Offer really easy serial
communication over Bluetooth. Note that
Bluetooth classic (v2) and Bluetooth low
energy or BLE (v4+) are different protocols.

LOW POWER DEVICES

What makes a wireless device wired is its need to connect with a
supply. Using a battery to make it portable, the quest is to have as
small battery as possible to make it operate for practically long
periods of time. That is all about low power designs equal to low
consumption current designs. There are low power MCUs out in
the market offering “sleeping” modes consuming less than 3uA with
a timer like an RTC running that is setup to periodically “wake up”
the MCU. In that sleep mode there is another “current hungry”
device in our circuit we have to deal about, the regulator. All battery
operated circuits practically require at least one regulator. When an
LDO’s output is connected to nothing, i.e. no current is output
from it but its output voltage is generated, it consumes current to
operate itself. That spec is the “quiescent” or “ground pin” current.
Most regulators have 1mA – 20mA quiescent current, but some
specialty have 5uA or less!!

So, let’s use a low power MCU like STM32L031F6P6 from ST
costing around 1$ (LCSC.com) offering peripherals and memory
just above those of the ATMega328 but much higher speed and
better ADC. Its sleep current is 0.6uA. Let’s use the LDO
MCP1700T-3002E/TT from Microchip offering 1.6uA quiescent
current 3V output with ultra-low dropout costing about 0.3$ and
an NRF24L01+ (or NRF24L01P) for RF offering a sleep mode of
0.9uA. Here is an example of how we calculate our battery size and
operating duration:

Assume we use a 2AH lithium 3.6V non rechargeable AA size
battery. In sleep mode total consumption current will be 0.6uA +
1.6uA + 0.9uA = 3.1uA but let’s consider that to be 4uA for taking
some engineering margins into account and any unforeseen small
but real current leakage due to parasitic resistances. Never waking
up our battery will consume 4uA having 2AH energy reservoir,
lasting for 2AH/4uA = 500,000 hours. One year is 8760 hours and

p 215 2.15 Wireless communications and Internet engineering

as a NASA engineer said in a speech, there is the “engineering year”
that is 10,000 hours, easy for calculations with margins accounted.
Our battery will last for 50 years then! (not accounting for its self-
discharging over the years).

If our MCU turns on for 3 milliseconds every 3 seconds to measure
and calculate something sleeping at the rest of the time, it will
consume about 5mA running at 32MHz for that period only, making
an average current of 5mA/time ratio = 5mA/1000 = 5uA
totaling our average current to 4uA + 5uA = 9uA. If our transceiver
chip operates averagely every 1 minute (e.g. to transmit
temperature measurement only when it has changed significantly)
consuming 40mA for 5msecs it will consume averagely
40mA/time ratio = 40mA / (60/5msec) = 40mA/12000 = 12uA.
Totally our device will averagely consume 4uA + 5uA + 12uA =
21uA lasting our battery for 2AH/21uA = 95238 hours = around
10 years! Using a classic size coin cell CR2032 of 200mAH would
last for 1 year. The smaller the energy the smaller the device.

Note: the free “Console Calculator” by ZoeSoft enables you to type
“200m/21u” and get the result. It’s a tiny “must have” application on a PC
or MAC.

That example was given to understand that low energy takes sort
operating times and low quiescent and sleep current. It is also given
to show how simple the calculations are. Bluetooth version 4+ that
is the BLE for “Bluetooth Low Energy” is an example of this
technique with many existing single chip 32bit MCU+RF ICs to do
that, also compatible to smartphones! Protocols like WiFi designed
for constant data streaming or others with very low bit-rate needing
a lot of time to make a single transaction and sleep again, are not fit
for low energy applications.

THE TREND OF “SMART” DEVICES

7x7mm sized MCU + radio BLE ICs have enabled the making of
devices with a powerful MCU and a few sensors in the size of a keys
tag (mostly thanks to the low power). Using a smartphone to do
things is a nowadays trend, devices connected to smartphones have
inherited the name “smart” devices even though most of those are
functionally terribly stupid. Almost all “smart” devices are BLE

p 216 2.15 Wireless communications and Internet engineering

connected devices and there is a tsunami of tech startup companies
out there making more and more applications of this technology.
Smartphone centered wearables and home appliances technology is
coming into our lives for good.

IOT: BRIDGING MCUS TO THE

INTERNET

BLE has a usable range of about 20 to 50 meters. In the trend of
another “smart” system, “smart homes”, we usually need to access
appliances and equipment from everywhere and accessing from
everywhere means Internet. Since computers that can connect to
the internet like the Espressif’s ESP8266 or the ESP32, they cost
little and are super small, they easily embed into devices making the
“Internet of Things”, an even bigger tech startup tsunami. Almost all
use WiFi to connect, since it is now the de facto wireless network
to all homes, business and public places. Cellular connection is
costly (a SIM with a data plan for each device), 5G is to come at
some point in history, prove me wrong, it will fail or delay a lot.
Devices connected over the WiFi are surely accessible from the local
WiFi network within our home that is also using the internet
protocol. To get accessible though out of it they have to connect to
a server that is accessible to the internet. Let’s see the internet
basics.

INTERNET BASICS

It is not easier to write a better introduction than the “Internet
Protocol” article from Wikipedia (as of Jan 2020):

The Internet Protocol (IP) is the principal communications protocol
in the Internet protocol suite for relaying datagrams across network
boundaries. Its routing function enables internetworking, and
essentially establishes the Internet.

IP has the task of delivering packets from the source host to the
destination host solely based on the IP addresses in the packet
headers. For this purpose, IP defines packet structures that
encapsulate the data to be delivered. It also defines addressing

p 217 2.15 Wireless communications and Internet engineering

methods that are used to label the datagram with source and
destination information.

Historically, IP was the connectionless datagram service in the
original Transmission Control Program introduced by Vint Cerf and
Bob Kahn in 1974, which was complemented by a connection-
oriented service that became the basis for the Transmission Control
Protocol (TCP). The Internet protocol suite is therefore often
referred to as TCP/IP.

The first major version of IP, Internet Protocol Version 4 (IPv4), is
the dominant protocol of the Internet. Its successor is Internet
Protocol Version 6 (IPv6), which has been in increasing deployment
on the public Internet since c. 2006.

You can take this on and continue learning, from zero, the whole
“inside the cables signals” picture of how internet works.
Approaching that knowledge from the MCUs software
development, you may use real “just doing the job” web servers,
http clients and “sockets” in your MCUs (ESPs are mostly
suggested). That way you might make yourself a network engineer
and internet apps developer. In this approach you will get to know
a lot in internet and network engineering, starting from the ground
up, compared to just setting up PCs and servers, not knowing the
underneath reality, or compared to making web sites on WordPress
or Joomla instead of real HTML and a little of JavaScript. Last, you
will make 2-5 internet devices of tiny dimensions interacting with
the real world (e.g. measuring and controlling something) instead
of interacting with information only.

p 218 2.16 Fun has just begun, where to go next

2.16 FUN HAS JUST BEGUN, WHERE TO GO NEXT

Let us end with some advices from a guy with almost 3
decades of experience.

WHERE WE ARE

Welcome to the world of electronics and software engineering. If
you have understood and remember the 100% of this book, having
not touched an Arduino with your hands yet, your ranging in the
hobbyist world is not bad.

My very subjective view is that among the around 10 million
Arduino owners, you rang somewhere near the middle regarding
knowledge around the Arduino and above the middle regarding
electronics knowledge. If you give a week in making Arduino
projects of your choice, on which you may go with self - guidance
from now on, your ranking will go up by another 20%. Note here
that we are talking in statistics terms, about the 50th percentile, not
the 50% of the knowledge!

In regards to where you score among the professional embedded
electronics designers you have covered about the 10% of the road in
the essential knowledge of hardware and about the 5% in knowledge
of software. In experience, regarding PCBs design (design tools
using also) and building code of big projects (not what the command
x does but building big projects using it), you are at 0% and that
road is really long.

Good news is that you will understand the 90% of the terminology,
so your communication with professionals will be awesome. As a
hobbyist all the knowledge you find in the internet will be in a
comprehensive language. In case you are a manager who previously
didn’t know of electronics and software but you are engaged in
electronics projects, after this book the guys in the team will stop

p 219 2.16 Fun has just begun, where to go next

sounding “Greek” in your ears anymore. On top of that you will
actually feel like one of them.

ROADS UNWINDING AHEAD

You may go from hobbyist to product designer and undertake really
challenging and actual design missions with beers paid. That road is
to be taken with little steps knowing there is a long, long way to go
starting with some fails probably and moderate outcome some other
times. So you have to commit to customers contracts when you
count already quite a few projects made by you for you, having
completed at least a few that count over 1000 lines of code.
Regarding hardware design, you should count a dozen of PCBs
designed by you and made by you at least.

Should you graduate a school/college/university for that? To my
opinion you don’t have to. Many in this field (all are among the top
ones) have no such specialty degree, especially the software
developers. By the way, if you dream to follow a career as a software
developer it is not a bad method to begin with Arduinos. Software
here works in a machine (MCU) that you can easily get to know at
its 100%, unlike the big personal computers with thousands of
CPUs in the graphics card and terribly complex structure and
features in their hardware and in their operating system.

BEYOND ARDUINO

This book was not starting and ending in a few Arduino projects. It
started electronics from the ground up, giving the background in
electronic theory, components, techniques and finally in MCUs
technology. The reason was to show to you a horizon that goes
further than Arduinos. After some Arduino projects you may fly to
worlds of non-Arduino MCUs, if of course you ever feel like it and
there is a benefit there to you. A good starting point of non-Arduino
worlds may be STM32 MCUs. Prepare to program in C at most of
those MCU universes, and to take time to learn the full C language
and to understand and use more complex libraries (APIs) than the

p 220 2.16 Fun has just begun, where to go next

Arduino ecosystem. The benefits: a) Walk on the long road that goes
from hobbyist to product designer. b) In non-Arduino worlds you
will usually find in-circuit debugging, seamless watching of
variable’s values on run-time, multi-tasking operating systems,
MCUs that fit exactly to your project’s needs and many more
goodies. The cons: Less “ready to use” code, you may have to write
more, find “ready to use” less.

BEYOND ARDUINO IDE

The IDE we have been using is designed only around the concept
“we must not scare newcomers”. It is very primitive in general
regarding facilities other nowadays IDEs provide. You should look
about platformIO in Micorsoft’s “Visual Studio Code” in a video of
Andreas Spiess in YouTube (searching there for with those
keywords) after a few projects in the Arduino’s IDE. You will be
really amazed on how better you can program in such IDEs with
automatic code completion and error highlighting as you type. Even
while you are still at the Arduino IDE you surely must have and use
the notepad++ code editor (free), at least for “opening” other’s
people code on your PC.

RECOMMENDED READING

 Reading in the internet about whatever matter comes to your
path. Try to separate beginner’s conversations on blogs from
serious great articles on web sites like arduino.cc
sparkfun.com, adafruit.com, manufacturer’s articles in sort
pdfs and other super great sources.

 Datasheets and much searching in digikey.com and LCSC.com
for components.

 A good C language book (better leave C++ for a next step)
like the C’s creator Dennis Ritchie “C Programming Language,
2nd Edition” that is the full language reference and really well
written.

p 221 2.16 Fun has just begun, where to go next

 The Art of Electronics (3rd edition). The bible of electronics,
really. Like in this book, almost no math, practical to the bone.
It is the most influential book to writing the one you are reading
now. Not a lot in MCUs knowledge, but it covers electronics
engineering knowledge from ground up to the sky.

You need to combine two ways of learning. Reading books for
acquiring general and structured knowledge and learning over
googling for a specific problem you fall into, or “learn as you make”.
The last is far more efficient but the first is needed also. Have the
“learn as you make” as the first choice and apply it for about the
70% of the time devoted to learning.

The information out there is huge. Try to ask the best questions
first and then get answers at a skin level in many cases. Do not
approach learning as a road where you leave no gaps behind. Try to
fly over and see the big picture the most that you can. Read deeply
about matters that you are busy with at the moment. Know that
experience is more valuable at many cases (like PCBs design and
software development) so make more and read less.

RECOMMENDED YOUTUBE

MATERIAL

In my view, videos are to get experience about a subject mostly. If
a “how to” or “what is” is what you are missing, reading will get you
there 2 or 5 times faster. But videos are a treasure in getting
experience of hardware without touching it, or seeing how well a
software library is working. And yes, you have a great relaxing time
too.

Here are some greatly recommended channels (as of January 2020):

 ElectroBOOM: You get to love electrical engineering by this
guy!! A great electronics influencer to persons not involved to
electronics, beginners and even experts.

 GreatScott! Speechless of his great clarity and in-depth analysis

 Andreas Spiess: The guy with the Swiss accent who rocks!

p 222 2.16 Fun has just begun, where to go next

 educ8s.tv: The guy with the Greek accent who presents every
topic awesomely.

 Afrotechmods: for great intro videos.

 EEVblog: for real and I mean real experience and expertise on
over 1000 topics. Most are in very advanced level.

But I am sure I have missed out a lot. Sorry if I do not have some
great guys in that very sort list.

MAKING VS PASSIVELY LEARNING

Learning how to drive by books and driving is the difference of
learning vs doing here, especially in software development and in
PCBs design (if you start on that).

A recommendation: Type yourself the first programs of the chapter
2.14 and play with them on your Arduino. Purposely they are not
on the internet for copy-pasting them. You should train in finding
typo errors, use tabs properly, and have the feeling of incrementally
making, not copying.

THE SPECTRUM OF ENGINEERING

SKILLS

In programmers who are employed in big companies, the best ones
are more than 10 times more productive than the least capable guys
in the same company. In electronics design the situation is the same
and worse. The great ones I have met all and I mean all, love what
they do and do it as a hobby besides their employment time. You
get good to what attracts you and joys you.

CONCLUSIONS

Hope you enjoyed. Opening a door in your life had been my goal.
Walking through is up to you if there is meaning there for you.

Enjoy making your ideas.

p 223 2.16 Fun has just begun, where to go next

YOU CAN REACH ME:

o Making a highly appreciated Amazon review. Next edition
(2021) will get better mostly by listening to your precious like
gold feedback, so you could make next readers happier.

o Feel free to discuss any topic with me or others on the blog /
forum for this book. Go to the site www.jfragos.com or
“Google” the title of the book + the word “forum” and you will
get there easily enough.

o If you happen to read this from a digital copy circulating on a
torrent (not having payed moneys for it) and you feel like buying
me a small beer for my work, it is just a very few clicks on Paypal
at or just buy it from Amazon, and I will
shout a loud “Cheers”

p 224 3.1 Multiplier prefixes

3. APPENDIX
3.1 MULTIPLIER PREFIXES
Where may zeros are involved, e.g. 0.000000021 or 13200000 instead
of having to count zeros each time on such numbers, in engineering
terminology we use some multipliers named in easy names to
remember. Here they are:

Acronym Symbol Value

tera T x 1 000 000 000 0000

giga G x 1 000 000 000

mega M x 1 000 000

kilo K x 1 000

milli m x 0.001

micro μ or u x 0.000 001

nano n x 0.000 000 001

pico p x 0.000 000 000 001

Examples:

 A resistor of 1200 Ohms is 1.2Kohms or in sort 1.2K or 1K2

 The WiFi radio frequency is around 2400000Hz that is 2.4GHz

 A capacitor 0.0000001 Farad is 100nF or 0.1uF

p 225 3.2 A real datasheet of an LED

3.2 A REAL DATASHEET OF AN LED

p 226 3.2 A real datasheet of an LED

p 227 3.2 A real datasheet of an LED

p 228 3.2 A real datasheet of an LED

p 229 3.3 Datasheet highlights of some notable MCUs

3.3 DATASHEET HIGHLIGHTS OF SOME NOTABLE MCUS

STM32F030 SERIES

p 230 3.3 Datasheet highlights of some notable MCUs

p 231 3.3 Datasheet highlights of some notable MCUs

p 232 3.3 Datasheet highlights of some notable MCUs

STM32F4 SERIES

p 233 3.3 Datasheet highlights of some notable MCUs

p 234 3.3 Datasheet highlights of some notable MCUs

ESP32

p 235 3.3 Datasheet highlights of some notable MCUs

p 236 3.3 Datasheet highlights of some notable MCUs

	Cover
	Contents

		2020-12-15T07:33:35+0000
	Preflight Ticket Signature

